×

Construction of full H-matrices with the given eigenvalues based on the Givens matrices. (English) Zbl 1455.65060

Summary: The inverse eigenvalue problem is about how to construct a desired matrix whose spectrum is the given number set. In this paper, in view of the Givens matrices, we prove that there exist three classes of full H-matrices which include strictly diagonally dominant full matrix, \( \alpha \)-strictly diagonally dominant full matrix and \(\alpha \)-double strictly diagonally dominant full matrix, and their spectrum are all the given number set. In addition, we design some numerical algorithms to explain how to construct the above-mentioned full H-matrices.

MSC:

65F18 Numerical solutions to inverse eigenvalue problems
15A18 Eigenvalues, singular values, and eigenvectors
15A29 Inverse problems in linear algebra

References:

[1] M. T. Chu and G. H. Golub,Inverse Eigenvalue Problems: Theory, Algorithms, and Applications, Oxford University Press, USA, 2005. · Zbl 1075.65058
[2] M. T. Chu, F. Diele and S. Ragni,On the inverse problem of constructing symmetric pentadiagonal Toeplitz matrices from their three largest eigenvalues, Inverse Probl., 2005, 21(6), 1879-1894. · Zbl 1106.65032
[3] T. B. Gan and T. Z. Huang,Simple criteria for nonsingular H-matrices, Linear Algebra Appl., 2003. DOI: 10.1016/S0024-3795(03)00646-3. · Zbl 1033.15019
[4] K. Ghanbari,A survey on inverse and generalized inverse eigenvalue problems for Jacobi matrices, Appl. Math. Comput., 2008, 195(2), 355-363. · Zbl 1156.65036
[5] S. G. Hwang and S. S. Pyo,The inverse eigenvalue problem for symmetric doubly stochastic matrices, Linear Algebra Appl., 2004. DOI: 10.1016/S00243795(03)00366-5.
[6] Z. Y. Liu, Y. L. Zhang, C. Ferreira and R. Ralha,On inverse eigenvalue problems for block Toeplitz matrices with Toeplitz blocks, Appl. Math. Comput., 2010, 216(6), 1819-1830. · Zbl 1192.65040
[7] J. Z. Liu and Y. Q. Huang,Some properties on Schur complements of Hmatrices and diagonally dominant matrices, Linear Algebra Appl., 2004. DOI: 10.1016/j.laa.2004.04.012. · Zbl 1068.15004
[8] A. M. Nazari and F. Sherafat,On the inverse eigenvalue problem for nonnegative matrices of order two to five, Linear Algebra Appl., 2012, 436(7), 1771-1790. · Zbl 1241.15008
[9] J. Peng, X. Y. Hu and L. Zhang,A kind of inverse eigenvalue problems of Jacobi matrix, Appl. Math. Comput., 2006, 175(2), 1543-1555. · Zbl 1098.65040
[10] P. Pango and B. Champagne,On the efficient use of Givens rotations in SVDbased subspace tracking algorithms, Signal Processing, 1999, 74(3), 253-277. · Zbl 1098.94574
[11] W. Rudin,Principles of mathematical analysis, McGraw-Hill Education, USA, 1976. · Zbl 0346.26002
[12] J. J. Rotman,Advanced Modern Algebra, Prentice Hall, USA, 2003.
[13] H. ˇSmigoc,The inverse eigenvalue problem for nonnegative matrices, Linear Algebra Appl., 2004. DOI: 10.1016/j.laa.2004.03.036. · Zbl 1075.15012
[14] X. Q. Wu and E. X. Jiang,A new algorithm on the inverse eigenvalue problem for double dimensional Jacobi matrices, Linear Algebra Appl., 2012, 437(7), 1760-1770. · Zbl 1251.65051
[15] X. Q. Wu,A divide and conquer algorithm on the double dimensional inverse eigenvalue problem for Jacobi matrices, Appl. Math. Comput., 2012, 219(8), 3840-3846. · Zbl 1311.65039
[16] Y. Wei and H. Dai,An inverse eigenvalue problem for Jacobi matrix, Appl. Math. Comput., 2015. DOI: 10.1016/j.amc.2014.11.101. · Zbl 1328.15030
[17] Y. Wei,A Jacobi matrix inverse eigenvalue problem with mixed date, Linear Algebra Appl., 2013, 439(10), 2774-2783. · Zbl 1283.65031
[18] Y. Wei,Inverse eigenvalue problem of Jacobi matrix with mixed data, Linear Algebra Appl., 2015. DOI: 10.1016/j.laa.2014.09.031. · Zbl 1303.15012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.