×

\(\mathrm{SL}_2\) quantum trace in quantum Teichmüller theory via writhe. (English) Zbl 1523.57018

Summary: Quantization of the Teichmüller space of a punctured Riemann surface \(S\) is an approach to \(3\)-dimensional quantum gravity, and is a prototypical example of quantization of cluster varieties. Any simple loop \(\gamma\) in \(S\) gives rise to a natural trace-of-monodromy function \(\mathbb{I}(\gamma)\) on the Teichmüller space. For any ideal triangulation \(\Delta\) of \(S\), this function \(\mathbb{I}(\gamma)\) is a Laurent polynomial in the square-roots of the exponentiated shear coordinates for the arcs of \(\Delta\). An important problem was to construct a quantization of this function, \(\mathbb{I}(\gamma)\), namely to replace it by a noncommutative Laurent polynomial in the quantum variables. This problem, which is closely related to the framed protected spin characters in physics, has been solved by D. G. L. Allegretti and H. K. Kim [Adv. Math. 306, 1164–1208 (2017; Zbl 1433.13020)] using F. Bonahon and H. Wong’s [Geom. Topol. 15, No. 3, 1569–1615 (2011; Zbl 1227.57003)] \(\mathrm{SL}_2\) quantum trace for skein algebras, and by M. Gabella [Commun. Math. Phys. 351, No. 2, 563–598 (2017; Zbl 1369.81085)] using D. Gaiotto et al.’s [J. High Energy Phys. 2012, No. 12, Paper No. 82, 169 p. (2012; Zbl 1397.81364); Ann. Henri Poincaré 14, No. 7, 1643–1731 (2013; Zbl 1288.81132); Ann. Henri Poincaré 15, No. 1, 61–141 (2014; Zbl 1301.81262)] Seiberg-Witten curves, spectral networks, and writhe of links. We show that these two solutions to the quantization problem coincide. We enhance Gabella’s solution and show that it is a twist of the Bonahon-Wong quantum trace.

MSC:

57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
13F60 Cluster algebras
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
46L85 Noncommutative topology
53D55 Deformation quantization, star products
81R60 Noncommutative geometry in quantum theory
83C45 Quantization of the gravitational field

References:

[1] 10.1016/j.aim.2016.11.007 · Zbl 1433.13020 · doi:10.1016/j.aim.2016.11.007
[2] 10.2140/gt.2007.11.889 · Zbl 1134.57008 · doi:10.2140/gt.2007.11.889
[3] 10.2140/gt.2011.15.1569 · Zbl 1227.57003 · doi:10.2140/gt.2011.15.1569
[4] 10.2140/agt.2017.17.3399 · Zbl 1422.57032 · doi:10.2140/agt.2017.17.3399
[5] 10.1007/978-3-0348-8205-7 · doi:10.1007/978-3-0348-8205-7
[6] 10.1007/s00220-019-03411-w · Zbl 1436.13046 · doi:10.1007/s00220-019-03411-w
[7] 10.1017/CBO9781139087193 · doi:10.1017/CBO9781139087193
[8] 10.4171/jems/1167 · Zbl 1509.57013 · doi:10.4171/jems/1167
[9] 10.4213/tmf793 · Zbl 0986.32007 · doi:10.4213/tmf793
[10] 10.1007/s10240-006-0039-4 · Zbl 1099.14025 · doi:10.1007/s10240-006-0039-4
[11] 10.4171/029-1/16 · Zbl 1162.32009 · doi:10.4171/029-1/16
[12] 10.1007/s00222-008-0149-3 · Zbl 1183.14037 · doi:10.1007/s00222-008-0149-3
[13] 10.1007/s11511-008-0030-7 · Zbl 1263.13023 · doi:10.1007/s11511-008-0030-7
[14] 10.1007/s00220-016-2729-1 · Zbl 1369.81085 · doi:10.1007/s00220-016-2729-1
[15] 10.1007/JHEP11(2012)090 · Zbl 1397.81363 · doi:10.1007/JHEP11(2012)090
[16] 10.1007/JHEP12(2012)082 · Zbl 1397.81364 · doi:10.1007/JHEP12(2012)082
[17] 10.1007/s00023-013-0239-7 · Zbl 1288.81132 · doi:10.1007/s00023-013-0239-7
[18] 10.1007/s00023-013-0238-8 · Zbl 1301.81262 · doi:10.1007/s00023-013-0238-8
[19] 10.1007/s00220-015-2455-0 · Zbl 1344.81141 · doi:10.1007/s00220-015-2455-0
[20] 10.14231/AG-2015-007 · Zbl 1322.14032 · doi:10.14231/AG-2015-007
[21] 10.2140/agt.2010.10.1245 · Zbl 1207.81034 · doi:10.2140/agt.2010.10.1245
[22] 10.1023/A:1007460128279 · Zbl 0897.57014 · doi:10.1023/A:1007460128279
[23] 10.4171/QT/115 · Zbl 1427.57011 · doi:10.4171/QT/115
[24] 10.1017/s1474748017000068 · Zbl 1419.57036 · doi:10.1017/s1474748017000068
[25] 10.1142/S0218216509007129 · Zbl 1204.57033 · doi:10.1142/S0218216509007129
[26] ; Ohtsuki, Tomotada, Quantum invariants : a study of knots, 3-manifolds, and their sets. Series on Knots and Everything, 29 (2002) · Zbl 0991.57001
[27] 10.4171/075 · Zbl 1243.30003 · doi:10.4171/075
[28] ; Przytycki, Józef H., Fundamentals of Kauffman bracket skein modules, Kobe J. Math., 16, 1, 45 (1999) · Zbl 0947.57017
[29] 10.1016/S0040-9383(98)00062-7 · Zbl 0958.57011 · doi:10.1016/S0040-9383(98)00062-7
[30] 10.1007/BF02096491 · Zbl 0768.57003 · doi:10.1007/BF02096491
[31] 10.1093/imrn/rnab094 · Zbl 1525.13034 · doi:10.1093/imrn/rnab094
[32] 10.1142/9789812798350_0003 · Zbl 0732.57008 · doi:10.1142/9789812798350_0003
[33] 10.1515/9783110435221 · Zbl 1346.57002 · doi:10.1515/9783110435221
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.