×

String cone and superpotential combinatorics for flag and Schubert varieties in type A. (English) Zbl 1417.05245

Summary: We study the combinatorics of pseudoline arrangements and their relation to the geometry of flag and Schubert varieties. We associate to each pseudoline arrangement two polyhedral cones, defined in a dual manner. We prove that one of them is the weighted string cone by Littelmann and Berenstein-Zelevinsky. For the other we show how it arises in the framework of cluster varieties and mirror symmetry by M. Gross et al. [J. Am. Math. Soc. 31, No. 2, 497–608 (2018; Zbl 1446.13015)]: for the flag variety the cone is the tropicalization of their superpotential while for Schubert varieties a restriction of the superpotential is necessary.
We prove that the two cones are unimodularly equivalent. As a corollary of our combinatorial result we realize Caldero’s toric degenerations of Schubert varieties as GHKK-degeneration using cluster theory.

MSC:

05E15 Combinatorial aspects of groups and algebras (MSC2010)
14M15 Grassmannians, Schubert varieties, flag manifolds
13F60 Cluster algebras

Citations:

Zbl 1446.13015

References:

[1] Anderson, Dave, Okounkov bodies and toric degenerations, Math. Ann., 356, 3, 1183-1202 (2013) · Zbl 1273.14104
[2] Berenstein, Arkady; Zelevinsky, Andrei, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., 143, 1, 77-128 (2001) · Zbl 1061.17006
[3] Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122, 1, 49-149 (1996) · Zbl 0966.17011
[4] Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52 (2005) · Zbl 1135.16013
[5] Bossinger, Lara; Frías-Medina, Bosco; Magee, Timothy; Nájera Chávez, Alfredo, Toric degenerations of cluster varieties and cluster duality (2018), arXiv preprint · Zbl 1454.13030
[8] Fang, Xin; Fourier, Ghislain; Littelmann, Peter, Essential bases and toric degenerations arising from birational sequences, Adv. Math., 312, 107-149 (2017) · Zbl 1453.17005
[9] Fock, V. V.; Goncharov, A. B., Cluster \(X\)-varieties, amalgamation, and Poisson-Lie groups, (Algebraic Geometry and Number Theory. Algebraic Geometry and Number Theory, Progr. Math., vol. 253 (2006), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 27-68 · Zbl 1162.22014
[10] Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. I. Foundations, J. Amer. Math. Soc., 15, 2, 497-529 (2002) · Zbl 1021.16017
[11] Fomin, Sergey; Williams, Lauren; Zelevinsky, Andrei, Introduction to cluster algebras. chapters 1-3 (2016), arXiv preprint
[12] Gawrilow, Ewgenij; Joswig, Michael, Polymake: a framework for analyzing convex polytopes, (Polytopes-Combinatorics and Computation (2000), Springer), 43-73 · Zbl 0960.68182
[13] Geiss, Christof; Leclerc, Bernard; Schröer, Jan, Cluster algebras in algebraic Lie theory, Transform. Groups, 18, 1, 149-178 (2013) · Zbl 1278.13027
[14] Gelfand, I. M.; Tsetlin, M. L., Finite-dimensional representations of the group of unimodular matrices, Dokl. Akad. Nauk SSSR, 71, 825-828 (1950) · Zbl 0037.15301
[16] Genz, Volker; Koshevoy, Gleb; Schumann, Bea, Polyhedral parametrizations of canonical bases & cluster duality (2017), arXiv preprint · Zbl 1453.13065
[17] Gleizer, Oleg; Postnikov, Alexander, Littlewood-Richardson coefficients via Yang-Baxter equation, Int. Math. Res. Not., 2000, 14, 741-774 (2000) · Zbl 0987.20023
[18] Goncharov, Alexander; Shen, Linhui, Geometry of canonical bases and mirror symmetry, Invent. Math., 202, 2, 487-633 (2015) · Zbl 1355.14030
[19] Gonciulea, Nicolae; Lakshmibai, Venkatramani, Degenerations of flag and Schubert varieties to toric varieties, Transform. Groups, 1, 3, 215-248 (1996) · Zbl 0909.14028
[20] Gross, Mark; Hacking, Paul; Keel, Sean, Birational geometry of cluster algebras, Algebr. Geom., 2, 2, 137-175 (2015) · Zbl 1322.14032
[21] Gross, Mark; Hacking, Paul; Keel, Sean; Kontsevich, Maxim, Canonical bases for cluster algebras, J. Amer. Math. Soc., 31, 2, 497-608 (2018) · Zbl 1446.13015
[22] Hibi, Takayuki; Li, Nan, Unimodular equivalence of order and chain polytopes, Math. Scand., 118, 1, 5-12 (2016) · Zbl 1335.52026
[23] Kaveh, Kiumars, Crystal bases and Newton-Okounkov bodies, Duke Math. J., 164, 13, 2461-2506 (2015) · Zbl 1428.14083
[25] Kaveh, Kiumars; Manon, Christopher, Khovanskii bases, higher rank valuations and tropical geometry (2016), arXiv preprint · Zbl 1420.14146
[26] Keller, Bernhard, Quiver mutation in JavaScript and Java, Available at
[28] Littelmann, Peter, Cones, crystals, and patterns, Transform. Groups, 3, 2, 145-179 (1998) · Zbl 0908.17010
[29] Maclagan, Diane; Sturmfels, Bernd, Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161 (2015), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1321.14048
[32] Scott, Joshua S., Grassmannians and cluster algebras, Proc. Lond. Math. Soc. (3), 92, 2, 345-380 (2006) · Zbl 1088.22009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.