×

Seasonal forcing in stochastic epidemiology models. (English) Zbl 1391.92048

Summary: The goal of this paper is to motivate the need and lay the foundation for the analysis of stochastic epidemiological models with seasonal forcing. We consider stochastic SIS and SIR epidemic models, where the internal noise is due to the random interactions of individuals in the population. We provide an overview of the general theoretic framework that allows one to understand noise-induced rare events, such as spontaneous disease extinction. Although there are many paths to extinction, there is one path termed the optimal path that is probabilistically most likely to occur. By extending the theory, we have identified the quasi-stationary solutions and the optimal path to extinction when seasonality in the contact rate is included in the models. Knowledge of the optimal extinction path enables one to compute the mean time to extinction, which in turn allows one to compare the effect of various control schemes, including vaccination and treatment, on the eradication of an infectious disease.

MSC:

92D30 Epidemiology
60H30 Applications of stochastic analysis (to PDEs, etc.)
34F05 Ordinary differential equations and systems with randomness
Full Text: DOI

References:

[1] Sharp, P.A., Cooney, C.L., Kastner, M.A., Lees, J., Sasisekharan, R., Yaffe, M.B., Bhatia, S.N., Jacks, T.E., Lauffenburger, D.A., Langer, R., Hammond, P.T.: The Third Revolution: The Convergence of the Life Sciences, Physical Sciences, and Engineering. Massachusetts Institute of Technology, Cambridge (2011)
[2] Sharp, PA; Langer, R, Promoting convergence in biomedical science, Science, 333, 527-527, (2011) · doi:10.1126/science.1205008
[3] Anderson, R.M., May, R.M., Anderson, B.: Infectious Diseases of Humans: Dynamics and Control, vol. 28. Wiley Online Library, London (1992)
[4] Bailey, N.T., et al.: The Mathematical Theory of Infectious Diseases and its Applications. Charles Griffin & Company Ltd., London (1975) · Zbl 0334.92024
[5] Bartlett, M.S.: An Introduction to Stochastic Processes: with Special Reference to Methods and Applications. The University Press, Cambridge (1955) · Zbl 0068.11801
[6] Hamer, W.H.: The Milroy Lectures on Epidemic Disease in England: The Evidence of Variability and of Persistency of Type. Bedford Press, London (1906)
[7] Kermack, WO; McKendrick, AG, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A, 115, 700-721, (1927) · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[8] Ross, R; Thomson, D, A case of sleeping sickness studied by precise enumerative methods: regular periodical increase of the parasites disclosed, Proc. R. Soc. Lond. Ser. B, 82, 411-415, (1910) · doi:10.1098/rspb.1910.0035
[9] Soper, HE, The interpretation of periodicity in disease prevalence, J. R. Stat. Soc., 92, 34-73, (1929) · JFM 55.0941.13 · doi:10.2307/2341437
[10] Durrett, R; Levin, S, The importance of being discrete (and spatial), Theor. Popul. Biol., 46, 363-394, (1994) · Zbl 0846.92027 · doi:10.1006/tpbi.1994.1032
[11] Tsimring, LS, Noise in biology, Rep. Prog. Phys., 77, 026,601, (2014) · doi:10.1088/0034-4885/77/2/026601
[12] Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, New York (2004) · Zbl 1143.60001 · doi:10.1007/978-3-662-05389-8
[13] Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992) · Zbl 0511.60038
[14] Assaf, M; Meerson, B, Extinction of metastable stochastic populations, Phys. Rev. E, 81, 021,116, (2010) · doi:10.1103/PhysRevE.81.021116
[15] Dykman, M; Mori, E; Ross, J; Hunt, P, Large fluctuations and optimal paths in chemical kinetics, J. Chem. Phys., 100, 5735-5750, (1994) · doi:10.1063/1.467139
[16] Elgart, V; Kamenev, A, Rare event statistics in reaction-diffusion systems, Phys. Rev. E, 70, 041,106, (2004) · doi:10.1103/PhysRevE.70.041106
[17] Forgoston, E; Bianco, S; Shaw, LB; Schwartz, IB, Maximal sensitive dependence and the optimal path to epidemic extinction, Bull. Math. Biol., 73, 495-514, (2011) · Zbl 1226.92062 · doi:10.1007/s11538-010-9537-0
[18] Gang, H, Stationary solution of master equations in the large-system-size limit, Phys. Rev. A, 36, 5782, (1987) · doi:10.1103/PhysRevA.36.5782
[19] Kessler, DA; Shnerb, NM, Extinction rates for fluctuation-induced metastabilities: a real space WKB approach, J. Stat. Phys., 127, 861-886, (2007) · Zbl 1118.91074 · doi:10.1007/s10955-007-9312-2
[20] Kubo, R; Matsuo, K; Kitahara, K, Fluctuation and relaxation of macrovariables, J. Stat. Phys., 9, 51-96, (1973) · doi:10.1007/BF01016797
[21] Nieddu, G; Billings, L; Forgoston, E, Analysis and control of pre-extinction dynamics in stochastic populations, Bull. Math. Biol., 76, 3122-3137, (2014) · Zbl 1328.92063 · doi:10.1007/s11538-014-0047-3
[22] Schwartz, IB; Forgoston, E; Bianco, S; Shaw, LB, Converging towards the optimal path to extinction, J. R. Soc. Interface, 8, 1699-1707, (2011) · Zbl 1226.92062 · doi:10.1098/rsif.2011.0159
[23] Nieddu, G.T., Billings, L., Kaufman, J.H., Forgoston, E. and Bianco, S.: Extinction pathways and outbreak vulnerability in a stochastic Ebola model. J. Royal Soc. Interface 14(127), 20160847 (2017)
[24] Assaf, M; Kamenev, A; Meerson, B, Population extinction in a time-modulated environment, Phys. Rev. E, 78, 041,123, (2008) · doi:10.1103/PhysRevE.78.041123
[25] Black, AJ; McKane, AJ, WKB calculation of an epidemic outbreak distribution, J. Stat. Mech. Theory Exp., 2011, p12,006, (2011) · doi:10.1088/1742-5468/2011/12/P12006
[26] Wentzell, A, Rough limit theorems on large deviations for Markov stochastic processes, I, Theory Probab. Appl., 21, 227-242, (1976) · Zbl 0361.60005
[27] Doering, CR; Sargsyan, KV; Sander, LM, Extinction times for birth-death processes: exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation, Multiscale Model. Simul., 3, 283-299, (2005) · Zbl 1072.60092 · doi:10.1137/030602800
[28] Dykman, MI; Schwartz, IB; Landsman, AS, Disease extinction in the presence of random vaccination, Phys. Rev. Lett., 101, 078,101, (2008) · doi:10.1103/PhysRevLett.101.078101
[29] Billings, L; Mier-y Teran-Romero, L; Lindley, B; Schwartz, IB, Intervention-based stochastic disease eradication, PloS ONE, 8, e70211, (2013) · doi:10.1371/journal.pone.0070211
[30] Gillespie, DT, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 403-434, (1976) · doi:10.1016/0021-9991(76)90041-3
[31] London, WP; Yorke, JA, Recurrent outbreaks of measles, chickenpox and mumps I. seasonal variation in contact rates, Am. J. Epidemiol., 98, 453-468, (1973) · doi:10.1093/oxfordjournals.aje.a121575
[32] Schwartz, IB; Smith, H, Infinite subharmonic bifurcation in an seir epidemic model, J. Math. Biol., 18, 233-253, (1983) · Zbl 0523.92020 · doi:10.1007/BF00276090
[33] Billings, L; Bollt, EM; Schwartz, IB, Phase-space transport of stochastic chaos in population dynamics of virus spread, Phys. Rev. Lett., 88, 234,101, (2002) · doi:10.1103/PhysRevLett.88.234101
[34] Bollt, EM; Billings, L; Schwartz, IB, A manifold independent approach to understanding transport in stochastic dynamical systems, Phys. D Nonlinear Phenom., 173, 153-177, (2002) · Zbl 1008.37021 · doi:10.1016/S0167-2789(02)00659-0
[35] Rand, D; Wilson, H, Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics, Proc. R. Soc. Lond. B: Ser. B, 246, 179-184, (1991) · doi:10.1098/rspb.1991.0142
[36] Dykman, MI; Golding, B; McCann, LI; Smelyanskiy, VN; Luchinsky, DG; Mannella, R; McClintock, PVE, Activated escape of periodically driven systems, Chaos Interdiscip. J. Nonlinear Sci., 11, 587-594, (2001) · Zbl 0982.81062 · doi:10.1063/1.1380368
[37] Maier, RS; Stein, DL, Noise-activated escape from a sloshing potential well, Phys. Rev. Lett., 86, 3942-3945, (2001) · doi:10.1103/PhysRevLett.86.3942
[38] Lindley, BS; Schwartz, IB, An iterative action minimizing method for computing optimal paths in stochastic dynamical systems, Phys. D Nonlinear Phenom., 255, 22-30, (2013) · Zbl 1286.65011 · doi:10.1016/j.physd.2013.04.001
[39] Ren, EW; Vanden-Eijnden, E, Minimum action method for the study of rare events, Commun. Pure Appl. Math., 57, 637-656, (2004) · Zbl 1050.60068 · doi:10.1002/cpa.20005
[40] Heymann, M; Vanden-Eijnden, E, The geometric minimum action method: a least action principle on the space of curves, Commun. Pure Appl. Math., 61, 1052-1117, (2004) · Zbl 1146.60046 · doi:10.1002/cpa.20238
[41] Bauver, M; Forgoston, E; Billings, L, Computing the optimal path in stochastic dynamical systems, Chaos Interdiscip. J. Nonlinear Sci., 26, 083,101, (2016) · Zbl 1378.60096 · doi:10.1063/1.4958926
[42] Fine, PE; Clarkson, JA, Measles in england and walesi: an analysis of factors underlying seasonal patterns, Int. J. Epidemiol., 11, 5-14, (1982) · doi:10.1093/ije/11.1.5
[43] Rohani, P; Keeling, MJ; Grenfell, BT, The interplay between determinism and stochasticity in childhood diseases, Am. Nat., 159, 469-481, (2002) · doi:10.1086/339467
[44] Glendinning, P; Perry, LP, Melnikov analysis of chaos in a simple epidemiological model, J. Math. Biol., 35, 359-373, (1997) · Zbl 0867.92021 · doi:10.1007/s002850050056
[45] Khasin, M; Dykman, M; Meerson, B, Speeding up disease extinction with a limited amount of vaccine, Phys. Rev. E, 81, 051,925, (2010) · doi:10.1103/PhysRevE.81.051925
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.