×

Slicing conditions for axisymmetric gravitational collapse of Brill waves. (English) Zbl 1431.83007

Summary: In numerical relativity, spacetimes involving compact strongly gravitating objects are constructed as numerical solutions of Einstein’s equations. Success of such a process strongly depends on the availability of appropriate coordinates, which are typically constructed dynamically. A very robust coordinate choice is a so-called moving puncture gauge, commonly used for numerical simulations of black hole spacetimes. Nevertheless it is known to fail for evolving near-critical Brill wave data. We construct a new ‘quasi-maximal’ slicing condition and demonstrate that it exhibits better behavior for such data. This condition is based on the 1+log slicing with an additional source term derived from maximal slicing. It is relatively simple to implement in existing moving puncture codes and computationally inexpensive. We also illustrate the properties of constructed spacetimes based on gauge-independent quantities in compactified spacetime diagrams. These invariants are also used to show how created black holes settle down to a Schwarzschild black hole. For Brill waves see [D. Brill, “On the positive definite mass of the Bondi-Weber-Wheeler time-symmetric gravitational waves”, Ann. Phys. 7, No. 4, 466–483 (1959; doi:10.1016/0003-4916(59)90055-7); in: Gravitation. Problems. Prospects. Kiev: “Naukova Dumka”. 17–22 (1972; Zbl 0264.53031)].

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C75 Space-time singularities, cosmic censorship, etc.
83C15 Exact solutions to problems in general relativity and gravitational theory
83C35 Gravitational waves
83-08 Computational methods for problems pertaining to relativity and gravitational theory

Citations:

Zbl 0264.53031

References:

[1] Eppley, K., Evolution of time-symmetric gravitational waves: initial data and apparent horizons, Phys. Rev. D, 16, 1609-1614, (1977) · doi:10.1103/PhysRevD.16.1609
[2] Brill, D. R., On the positive definite mass of the bondi-weber-wheeler time-symmetric gravitational waves, Ann. Phys., 7, 466-483, (1959) · doi:10.1016/0003-4916(59)90055-7
[3] Abrahams, A. M.; Evans, C. R., Critical behavior and scaling in vacuum axisymmetric gravitational collapse, Phys. Rev. Lett., 70, 2980-2983, (1993) · doi:10.1103/PhysRevLett.70.2980
[4] Teukolsky, S. A., Linearized quadrupole waves in general relativity and the motion of test particles, Phys. Rev. D, 26, 745-750, (1982) · doi:10.1103/PhysRevD.26.745
[5] Choptuik, M. W., Universality and scaling in gravitational collapse of a massless scalar field, Phys. Rev. Lett., 70, 9-12, (1993) · doi:10.1103/PhysRevLett.70.9
[6] Gundlach, C.; Martín-García, J. M., Critical phenomena in gravitational collapse, Living Rev. Relativ., 10, 5, (2007) · Zbl 1175.83037 · doi:10.12942/lrr-2007-5
[7] Alcubierre, M.; Allen, G.; Brügmann, B.; Lanfermann, G.; Seidel, E.; Suen, W-M; Tobias, M., Gravitational collapse of gravitational waves in 3d numerical relativity, Phys. Rev. D, 61, (2000) · doi:10.1103/PhysRevD.61.041501
[8] Garfinkle, D.; Duncan, G. C., Numerical evolution of brill waves, Phys. Rev. D, 63, (2001) · doi:10.1103/PhysRevD.63.044011
[9] Bona, C.; Massó, J.; Seidel, E.; Stela, J., New formalism for numerical relativity, Phys. Rev. Lett., 75, 600-603, (1995) · doi:10.1103/PhysRevLett.75.600
[10] Alcubierre, M.; Brügmann, B.; Diener, P.; Koppitz, M.; Pollney, D.; Seidel, E.; Takahashi, R., Gauge conditions for long-term numerical black hole evolutions without excision, Phys. Rev. D, 67, (2003) · doi:10.1103/PhysRevD.67.084023
[11] Hilditch, D.; Baumgarte, T. W.; Weyhausen, A.; Dietrich, T.; Brügmann, B.; Montero, P. J.; Müller, E., Collapse of nonlinear gravitational waves in moving-puncture coordinates, Phys. Rev. D, 88, (2013) · doi:10.1103/PhysRevD.88.103009
[12] Hilditch, D.; Weyhausen, A.; Brügmann, B., Pseudospectral method for gravitational wave collapse, Phys. Rev. D, 93, (2016) · doi:10.1103/PhysRevD.93.063006
[13] Hilditch, D.; Weyhausen, A.; Brügmann, B., Evolutions of centered brill waves with a pseudospectral method, Phys. Rev. D, 96, (2017) · doi:10.1103/PhysRevD.96.104051
[14] Rinne, O., Constrained evolution in axisymmetry and the gravitational collapse of prolate brill waves, Class. Quantum Grav., 25, (2008) · Zbl 1180.83008 · doi:10.1088/0264-9381/25/13/135009
[15] Shibata, M.; Nakamura, T., Evolution of three-dimensional gravitational waves: harmonic slicing case, Phys. Rev. D, 52, 5428-5444, (1995) · Zbl 1250.83027 · doi:10.1103/PhysRevD.52.5428
[16] Baumgarte, T. W.; Shapiro, S. L., On the numerical integration of einstein’s field equations, Phys. Rev. D, 59, (1999) · Zbl 1250.83004 · doi:10.1103/PhysRevD.59.024007
[17] Alcubierre, M., Introduction to 3  +  1 Numerical Relativity, (2008), Oxford: Oxford University Press, Oxford · Zbl 1140.83002
[18] Gundlach, C.; Martín-García, J. M., Well-posedness of formulations of the einstein equations with dynamical lapse and shift conditions, Phys. Rev. D, 74, (2006) · doi:10.1103/PhysRevD.74.024016
[19] van Meter, J. R.; Baker, J. G.; Koppitz, M.; Choi, D-I, How to move a black hole without excision: gauge conditions for the numerical evolution of a moving puncture, Phys. Rev. D, 73, (2006) · doi:10.1103/PhysRevD.73.124011
[20] Boyd, J. P., Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys., 69, 112-142, (1987) · Zbl 0615.65090 · doi:10.1016/0021-9991(87)90158-6
[21] Boyd, J. P., Chebyshev and Fourier Spectral Methods, (2001), New York: Dover, New York · Zbl 0994.65128
[22] Anderson, E., LAPACK Users’ Guide, (1999), SIAM: Philadelphia, PA, SIAM · Zbl 0755.65028
[24] Löffler, F., The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics, Class. Quantum Grav., 29, (2012) · Zbl 1247.83003 · doi:10.1088/0264-9381/29/11/115001
[26] Goodale, T.; Allen, G.; Lanfermann, G.; Massó, J.; Radke, T.; Seidel, E.; Shalf, J., The Cactus framework and toolkit: design and applications, (2003), Springer: Springer, Berlin · Zbl 1027.65524
[27] Schnetter, E.; Hawley, S. H.; Hawke, I., Evolutions in 3D numerical relativity using fixed mesh refinement, Class. Quantum Grav., 21, 1465-1488, (2004) · Zbl 1047.83002 · doi:10.1088/0264-9381/21/6/014
[28] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484, (1984) · Zbl 0536.65071 · doi:10.1016/0021-9991(84)90073-1
[31] Brown, J. D.; Diener, P.; Sarbach, O.; Schnetter, E.; Tiglio, M., Turduckening black holes: an analytical and computational study, Phys. Rev. D, 79, (2009) · doi:10.1103/PhysRevD.79.044023
[32] Alcubierre, M.; Brandt, S.; Brügmann, B.; Holz, D.; Seidel, E.; Takahashi, R.; Thornburg, J., Symmetry without symmetry: numerical simulation of axisymmetric systems using Cartesian grids, Int. J. Mod. Phys. D, 10, 273-290, (2001) · doi:10.1142/S0218271801000834
[33] van der Vorst, H. A., Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 631-644, (1992) · Zbl 0761.65023 · doi:10.1137/0913035
[34] Szilágyi, B.; Lindblom, L.; Scheel, M. A., Simulations of binary black hole mergers using spectral methods, Phys. Rev. D, 80, (2009) · doi:10.1103/PhysRevD.80.124010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.