×

Scalar field Green functions on causal sets. (English) Zbl 1367.83038

Summary: We examine the validity and scope of Johnston’s models [S. Johnston, Classical Quantum Gravity 25, No. 20, Article ID 202001, 12 p. (2008; Zbl 1152.83364)] for scalar field retarded Green functions on causal sets in 2 and 4 dimensions. As in the continuum, the massive Green function can be obtained from the massless one, and hence the key task in causal set theory is to first identify the massless Green function. We propose that the 2d model provides a Green function for the massive scalar field on causal sets approximated by any topologically trivial 2-dimensional spacetime. We explicitly demonstrate that this is indeed the case in a Riemann normal neighbourhood. In 4d the model can again be used to provide a Green function for the massive scalar field in a Riemann normal neighbourhood which we compare to Bunch and Parker’s continuum Green function. We find that the same prescription can also be used for de Sitter spacetime and the conformally flat patch of anti-de Sitter spacetime. Our analysis then allows us to suggest a generalisation of Johnston’s model for the Green function for a causal set approximated by 3-dimensional flat spacetime.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81T20 Quantum field theory on curved space or space-time backgrounds
35J08 Green’s functions for elliptic equations

Citations:

Zbl 1152.83364

Software:

Carpet; Cactus

References:

[1] Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R., Phys. Rev. Lett., 59, 521, (1987) · doi:10.1103/PhysRevLett.59.521
[2] Daughton, A. R.
[3] Johnston, S., Class. Quantum Grav., 25, (2008) · Zbl 1152.83364 · doi:10.1088/0264-9381/25/20/202001
[4] Johnston, S. P., (2010)
[5] Benincasa, D. M T.; Dowker, F.; Schmitzer, B., Class. Quantum Grav., 28, (2011) · Zbl 1217.83037 · doi:10.1088/0264-9381/28/10/105018
[6] Aslanbeigi, S.; Saravani, M.; Sorkin, R. D., J. High Energy Phys., JHEP06(2014), 024, (2014) · doi:10.1007/JHEP06(2014)024
[7] Johnston, S., Phys. Rev. Lett., 103, (2009) · doi:10.1103/PhysRevLett.103.180401
[8] Afshordi, N.; Aslanbeigi, S.; Sorkin, R. D., J. High Energy Phys., JHEP08(2012), 137, (2012) · Zbl 1397.81188 · doi:10.1007/JHEP08(2012)137
[9] Sorkin, R. D., J. Phys. Conf. Ser., 306, (2011)
[10] Bunch, T. S.; Parker, L., Phys. Rev. D, 20, 2499, (1979) · doi:10.1103/PhysRevD.20.2499
[11] Roy, M.; Sinha, D.; Surya, S., Phys. Rev. D, 87, (2013) · doi:10.1103/PhysRevD.87.044046
[12] Benincasa, D. M T.; Dowker, F., Phys. Rev. Lett., 104, (2010) · doi:10.1103/PhysRevLett.104.181301
[13] Myrheim, J.
[14] Gibbons, G. W.; Solodukhin, S. N., Phys. Lett. B, 649, 317, (2007) · Zbl 1248.53051 · doi:10.1016/j.physletb.2007.03.068
[15] Khetrapal, S.; Surya, S., Class. Quantum Grav., 30, (2013) · Zbl 1267.83011 · doi:10.1088/0264-9381/30/6/065005
[16] Brightwell, G.; Gregory, R., Phys. Rev. Lett., 66, 260, (1991) · Zbl 0968.83509 · doi:10.1103/PhysRevLett.66.260
[17] Johnston, S., Class. Quantum Grav., 32, (2015) · Zbl 1327.83119 · doi:10.1088/0264-9381/32/19/195020
[18] Allen, G.; Goodale, T.; Löffler, F.; Rideout, D.; Schnetter, E.; Seidel, E., Component specification in the cactus framework: the cactus configuration language, (2010)
[19] Goodale, T.; Allen, G.; Lanfermann, G.; Massó, J.; Radke, T.; Seidel, E.; Shalf, J., The Cactus framework and toolkit: design and applications, 197-227, (2002), Berlin: Springer, Berlin · Zbl 1027.65524
[20] Lighthill, M. J., An Introduction to Fourier Analysis and Generalised Functions, (1958), Cambridge: Cambridge University Press, Cambridge · Zbl 0078.11203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.