×

A preconditioned lattice Boltzmann flux solver for steady flows on unstructured hexahedral grids. (English) Zbl 1521.76707

Summary: The lattice Boltzmann flux solver (LBFS), first introduced by C. Shu et al. [“Development of lattice Boltzmann flux solver for simulation of incompressible flows”, Adv. Appl. Math. Mech. 6, No. 4, 436–460 (2014; doi:10.4208/aamm.2014.4.s2)] on structured meshes, allows fluid flow problems to be solved on unstructured meshes discretised by the finite volume method. The solver calculates the macroscopic fluxes at the cell interfaces from a local reconstruction of the lattice Boltzmann solution. In this paper the LBFS is extended to three-dimensional unstructured hexahedral meshes and a preconditioned lattice Boltzmann flux solver (PLBFS) is presented. The PLBFS involves applying the preconditioning technique proposed by Z. Guo et al. [“Preconditioned lattice-Boltzmann method for steady flows”, Phys. Rev. E (3) 70, No. 6, Article ID 066706, 8 p. (2004; doi:10.1103/PhysRevE.70.066706)]) to the LBFS and is achieved by modifying the equilibrium distribution function used to calculate the macroscopic fluxes at the cell interface. When the PLBFS is applied to steady flow problems, it is shown that convergence is significantly accelerated and the accuracy of predictions with unstructured grids is greatly improved when compared to the LBFS. This paper also introduces a strategy for choosing the optimal value of preconditioning factor with unstructured hexahedral meshes.

MSC:

76M28 Particle methods and lattice-gas methods
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] Chapman, S.; Cowling, T. G., The mathematical theory of non-uniform gases. 3rd edition. (1991), Cambridge University Press · Zbl 0726.76084
[2] Peng, G.; Xi, H.; Duncan, C.; Chou, S.-H., Finite volume scheme for the lattice Boltzmann method on unstructured meshes, Phys Rev E, 59, 4, 4675-4682 (1999)
[3] Peng, G.; Xi, H.; Duncan, C.; Chou, S.-H., Lattice Boltzmann method on irregular meshes, Phys Rev E, 58, 4, R4124-R4127 (1998)
[4] Xi, H.; Peng, G.; Chou, S. H., Finite-volume lattice Boltzmann method, Phys Rev E, 59, 5, 6202-6205 (1999)
[5] Stiebler, M.; Tölke, J.; Krafczyk, M., An upwind discretization scheme for the finite volume lattice Boltzmann method, Comput Fluid (2006) · Zbl 1177.76329
[6] Patil, D. V.; Lakshmisha, K. N., Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J Comput Phys, 228, 14, 5262-5279 (2009) · Zbl 1280.76054
[7] Ubertini, S.; Bella, G.; Succi, S., Unstructured lattice Boltzmann equation with memory, Math Comput Simulat, 72, 2-6, 237-241 (2006) · Zbl 1102.76057
[8] Zarghami, A.; Maghrebi, M. J.; Ghasemi, J.; Ubertini, S., Lattice Boltzmann finite volume formulation with improved stability, Commun Comput Phys, 12, 1, 42-64 (2012) · Zbl 1373.76280
[9] Wang, Y.; Yang, L.; Shu, C., From lattice Boltzmann method to lattice Boltzmann flux solver, Entropy, 17, 11, 7713-7735 (2015)
[10] Shu, C.; Wang, Y.; Teo, C. J.; Wu, J., Development of lattice Boltzmann flux solver for simulation of incompressible flows, Adv Appl Math Mech, 6, 4, 436-460 (2014)
[11] Pellerin, N.; Leclaire, S.; Reggio, M., Solving incompressible fluid flows on unstructured meshes with the lattice Boltzmann flux solver, Eng Appl Comput Fluid Mech, 11, 1, 310-327 (2017)
[12] Wu, Q.-F.; Shu, C.; Wang, Y.; Yang, L.-M., An effective lattice Boltzmann flux solver on arbitrarily unstructured meshes, Modern Phys Lett B, 32, 12n13, 1840012 (2018)
[13] Liu, Y.; Shu, C.; Zhang, H.; Yang, L., A high order least square-based finite difference-finite volume method with lattice Boltzmann flux solver for simulation of incompressible flows on unstructured grids, J Comput Phys, 109019 (2019)
[14] Wang, Y.; Shu, C.; Teo, C. J.; Wu, J.; Yang, L., Three-dimensional lattice Boltzmann flux solver and its applications to incompressible isothermal and thermal flows, Commun Comput Phys, 18, 3, 593-620 (2015) · Zbl 1373.76274
[15] Chorin A.J.. A numerical method for solving incompressible viscous flow problems. 1967.. 10.1006/jcph.1997.5716 · Zbl 0149.44802
[16] Turkel, E., Preconditioned methods for solving the incompressible and low speed compressible equations, J Comput Phys, 72, 2, 277-298 (1987) · Zbl 0633.76069
[17] Malan, A. G.; Lewis, R. W.; Nithiarasu, P., An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part I. Theory and implementation, Int J Numer Method Eng, 54, 5, 695-714 (2002) · Zbl 1098.76581
[18] Hejranfar, K.; Parseh, K., Application of a preconditioned high-order accurate artificial compressibility-based incompressible flow solver in wide range of Reynolds numbers, Int J Numer Method Fluids, 86, 1, 46-77 (2018)
[19] He, X.; Doolen, G. D.; Clark, T., Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier-Stokes equations, J Comput Phys (2002) · Zbl 1130.76397
[20] Shah, A.; Yuan, L.; Khan, A., Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations, Appl Math Comput, 215, 9, 3201-3213 (2010) · Zbl 1352.76084
[21] Kozel K., Kozel K., Louda P., Jarom, Íhoda Í. P. R.. Numerical solution of an unsteady flow using artificial compressibility method10.1.1.124.657.
[22] Hejranfar, K.; Parseh, K., Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows, J Comput Phys (2017) · Zbl 1378.76074
[23] He, X.; Luo, L.-S., Lattice Boltzmann model for the incompressible NavierStokes equation, J Stat Phys, 88, 3/4, 927-944 (1997) · Zbl 0939.82042
[24] Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. M., The lattice Boltzmann method (2017), Springer International Publishing: Springer International Publishing Cham · Zbl 1362.76001
[25] Turkel, E., Preconditioned methods for solving the incompressible and low speed compressible equations, J Comput Phys, 72, 2, 277-298 (1987) · Zbl 0633.76069
[26] Bernaschi, M.; Succi, S.; Chen, H., Accelerated lattice Boltzmann schemes for steady-state flow simulations, J Sci Comput, 16, 2, 135-144 (2001) · Zbl 0995.76074
[27] Verberg, R.; Ladd, a. J., Simulation of low-Reynolds-number flow via a time-independent lattice-Boltzmann method., Phys Rev E, 60, 3, 3366-3373 (1999)
[28] Noble, D. R.; Holdych, D. J., Full Newton lattice Boltzmann method for time-steady flows using a direct linear solver, Int J Modern Phys C, 18, 04, 652-660 (2007) · Zbl 1388.76305
[29] Tölke, J.; Krafczyk, M.; Rank, E., A multigrid-solver for the discrete Boltzmann equation, J Stat Phys, 107, 1/2, 573-591 (2002) · Zbl 1007.82004
[30] Lee, T.; Lin, C.-L., An eulerian description of the streaming process in the lattice Boltzmann equation, J Comput Phys, 185, 2, 445-471 (2003) · Zbl 1047.76106
[31] Seta, T.; Takahashi, R., Numerical Stability Analysis of FDLBM, J Stat Phys, 107, 1/2, 557-572 (2002) · Zbl 1007.82009
[32] Tölke, J.; Krafczyk, M.; Schulz, M.; Rank, E.; Berrios, R., Implicit discretization and nonuniform mesh refinement approaches for FD discretizations of LBGK Models, Int J Modern Phys C, 09, 08, 1143-1157 (1998)
[33] Mavriplis, D. J., Multigrid solution of the steady-state lattice Boltzmann equation, Comput Fluids, 35, 8-9, 793-804 (2006) · Zbl 1177.76318
[34] Guo, Z.; Zhao, T. S.; Shi, Y., Preconditioned lattice-Boltzmann method for steady flows, Phys Rev E, 70, 6, 1-8 (2004)
[35] Premnath, K. N.; Pattison, M. J.; Banerjee, S., Steady state convergence acceleration of the generalized lattice Boltzmann equation with forcing term through preconditioning, J Comput Phys, 228, 3, 746-769 (2009) · Zbl 1259.76059
[36] Izquierdo, S.; Fueyo, N., Preconditioned Navier-Stokes schemes from the generalised lattice Boltzmann equation, Progr Comput Fluid Dyn Int J, 8, 1-4, 189 (2008) · Zbl 1388.76296
[37] Izquierdo, S.; Fueyo, N., Optimal preconditioning of lattice Boltzmann methods, J Comput Phys, 228, 17, 6479-6495 (2009) · Zbl 1261.76046
[38] De Rosis, A., Preconditioned lattice Boltzmann method for steady flows: a noncascaded central-moments-based approach, Phys Rev E, 96, 6, 063308 (2017)
[39] Hajabdollahi, F.; Premnath, K. N., Improving the low Mach number steady state convergence of the cascaded lattice Boltzmann method by preconditioning, Comput Math Appl (2017)
[40] Hajabdollahi, F.; Premnath, K. N., Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations, Phys Rev E, 97, 5 (2018)
[41] Meng, X.; Wang, L.; Yang, X.; Guo, Z., Preconditioned multiple-relaxation-time lattice Boltzmann equation model for incompressible flow in porous media, Phys Rev E, 98, 5, 1-12 (2018)
[42] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems, Phys Rev, 94, 3, 511-525 (1954) · Zbl 0055.23609
[43] Shima, E.; Kitamura, K.; Haga, T., Greengauss/weighted-least-squares hybrid gradient reconstruction for arbitrary polyhedra unstructured grids, AIAA J, 51, 11, 2740-2747 (2013)
[44] Jameson, A.; Schmidt, W.; Turkel, E., Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, 14th Fluid Plasma Dyn Conf (1981)
[45] Hirsch, C., Numerical computation of internal and external flows : fundamentals of computational fluid dynamics (2007), Elsevier/Butterworth-Heinemann
[46] Courant, R.; Friedrichs, K.; Lewy, H., Über die partiellen differenzengleichungen der mathematischen physik, Math Annalen, 100, 1, 32-74 (1928) · JFM 54.0486.01
[47] Mavriplis, D. J.; Jameson, A., Multigrid solution of the Navier-Stokes equations on triangular meshes, AIAA J, 28, 8, 1415-1425 (1990)
[48] Niu, X. D.; Shu, C.; Chew, Y. T.; Wang, T. G., Investigation of stability and hydrodynamics of different lattice Boltzmann models, J Stat Phys, 117, 3-4, 665-680 (2004) · Zbl 1113.82044
[49] Freitas, C. J., Perspective - selected benchmarks from commercial CFD codes, J Fluid Eng, 117, 2, 208-218 (1995)
[50] Ku, H. C.; Hirsh, R. S.; Taylor, T. D., A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations, J Comput Phys, 70, 2, 439-462 (1987) · Zbl 0658.76027
[51] Ding, H.; Shu, C.; Yeo, K. S.; Xu, D., Numerical computation of three-dimensional incompressible viscous flows in the primitive variable form by local multiquadric differential quadrature method, Comput Method Appl Mech Eng, 195, 7-8, 516-533 (2006) · Zbl 1222.76072
[52] Dennis, S.; Chang, G. Z., Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J Fluid Mech, 42, 03, 471-489 (1970) · Zbl 0193.26202
[53] Shukla, R. K.; Tatineni, M.; Zhong, X., Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations, J Comput Phys, 224, 2, 1064-1094 (2007) · Zbl 1123.76044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.