×

Several topological indices of two kinds of tetrahedral networks. (English) Zbl 1477.05063

Summary: Tetrahedral network is considered as an effective tool to create the finite element network model of simulation, and many research studies have been investigated. The aim of this paper is to calculate several topological indices of the linear and circle tetrahedral networks. Firstly, the resistance distances of the linear tetrahedral network under different classifications have been calculated. Secondly, according to the above results, two kinds of degree-Kirchhoff indices of the linear tetrahedral network have been achieved. Finally, the exact expressions of Kemeny’s constant, Randic index, and Zagreb index of the linear tetrahedral network have been deduced. By using the same method, the topological indices of circle tetrahedral network have also been obtained.

MSC:

05C12 Distance in graphs
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C09 Graphical indices (Wiener index, Zagreb index, Randić index, etc.)
05C82 Small world graphs, complex networks (graph-theoretic aspects)

References:

[1] Li, Z. M.; Xie, Z.; Li, J. P.; Pan, Y. G., Resistance distance-based graph invariants and spanning trees of graphs derived from the strong prism of a star, Applied Mathematics and Computation, 382, 1-9 (2020) · Zbl 1441.05056 · doi:10.1016/j.amc.2020.125335
[2] Klein, D. J.; Randić, M., Resistance distance, Journal of Mathematical Chemistry, 12, 1, 81-95 (1993) · doi:10.1007/bf01164627
[3] Spielman, D. A.; Srivastava, N., Graph sparsification by effective resistances, SIAM Journal on Computing, 40, 6, 1913-1926 (2011) · Zbl 1237.05129 · doi:10.1137/080734029
[4] Chen, H.; Zhang, F., Resistance distance and the normalized Laplacian spectrum, Discrete Applied Mathmatics, 155, 5, 654-661 (2017) · Zbl 1113.05062
[5] Gutman, I.; Fei, L.; Yu, G., Degree resistance distance of unicyclic graphs, Transactions on Combinatorics, 1, 2, 27-40 (2012) · Zbl 1301.05103
[6] van der Hofstad, R.; Hulshof, T.; Nagel, J., Random walk on barely supercritical branching random walk, Probability Theory and Related Fields, 177, 1-2, 1-53 (2020) · Zbl 1434.60311 · doi:10.1007/s00440-019-00942-0
[7] Engländer, J.; Volkov, S., Impatient random walk, Journal of Theoretical Probability, 32, 4, 2020-2043 (2019) · Zbl 1480.60110 · doi:10.1007/s10959-019-00901-4
[8] Li, Y.; Wang, Y.; Lin, H.; Zhong, T., First arrival time picking for microseismic data based on DWSW algorithm, Journal of Seismology, 22, 4, 833-840 (2018) · doi:10.1007/s10950-018-9735-z
[9] Liao, X.; Cao, J.; Hu, J.; You, J.; Jiang, X.; Liu, Z., First arrival time identification using transfer learning with continuous wavelet transform feature images, IEEE Geoscience and Remote Sensing Letters, 17, 11, 2002-2006 (2020) · doi:10.1109/lgrs.2019.2955950
[10] Kyprianou, A. E.; Rivero, V.; Şengül, B., Conditioning subordinators embedded in Markov processes, Stochastic Processes and their Applications, 127, 4, 1234-1254 (2017) · Zbl 1373.60085 · doi:10.1016/j.spa.2016.07.013
[11] Schnurr, A., On deterministic Markov processes: expandability and related topics, Markov Processes and Related Fields, 19, 4, 693-720 (2013) · Zbl 1296.60200
[12] Ephraim, Y.; Roberts, W. J. J., An EM algorithm for Markov modulated Markov processes, IEEE Transactions on Signal Processing, 57, 2, 463-470 (2009) · Zbl 1391.62155 · doi:10.1109/tsp.2008.2007919
[13] Grabski, F., Semi-Markov failure rates processes, Applied Mathematics and Computation, 217, 24, 9956-9965 (2011) · Zbl 1227.60104 · doi:10.1016/j.amc.2011.04.055
[14] Pinsky, R., “Kemeny’s constant for one-dimensional diffusions, Electronic Communications in Probability, 24, 1-5 (2019) · Zbl 1481.60158 · doi:10.1214/19-ecp244
[15] Kooij, R. E.; Dubbeldam, J. L. A., Kemeny’s constant for several families of graphs and real-world networks, Discrete Applied Mathematics, 285, 96-107 (2020) · Zbl 1447.05187 · doi:10.1016/j.dam.2020.05.033
[16] Wang, X.; Dubbeldam, J. L. A.; Van Mieghem, P., Kemeny’s constant and the effective graph resistance, Linear Algebra and its Applications, 535, 231-244 (2017) · Zbl 1375.15005 · doi:10.1016/j.laa.2017.09.003
[17] Cruz, R.; Monsalve, J.; Rada, J., Trees with maximum exponential Randić index, Discrete Applied Mathematics, 283, 634-643 (2020) · Zbl 1442.05035 · doi:10.1016/j.dam.2020.03.009
[18] Shi, Y., Note on two generalizations of the Randić index, Applied Mathematics and Computation, 265, 1019-1025 (2015) · Zbl 1410.05026 · doi:10.1016/j.amc.2015.06.019
[19] Iqbal, Z.; Aslam, A.; Ishaq, M.; Gao, W., The edge versions of degree-based topological descriptors of dendrimers, Journal of Cluster Science, 31, 2, 445-452 (2020) · doi:10.1007/s10876-019-01658-w
[20] Kang, S. M.; Nazeer, W.; Zahid, M. A.; Nizami, A. R.; Aslam, A.; Munir, M., M-polynomials and topological indices of hex-derived networks, Open Physics, 16, 1, 394-403 (2018) · doi:10.1515/phys-2018-0054
[21] Liu, J.-B.; Wang, C.; Wang, S.; Wei, B., Zagreb indices and multiplicative Zagreb indices of Eulerian graphs, Bulletin of the Malaysian Mathematical Sciences Society, 42, 1, 67-78 (2019) · Zbl 1406.05020 · doi:10.1007/s40840-017-0463-2
[22] Furtula, B.; Graovac, A.; Vukičević, D., Augmented Zagreb index, Journal of Mathematical Chemistry, 48, 2, 370-380 (2010) · Zbl 1196.92050 · doi:10.1007/s10910-010-9677-3
[23] Sardar, M. S.; Pan, X. F.; Xu, S. A., Computation of resistance distance and Kirchhoff index of the two classes of silicate networks, Applied Mathematics and Computation, 381, 1-10 (2020) · Zbl 1462.05127 · doi:10.1016/j.amc.2020.125283
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.