×

On lower and upper bounds of matrices. (English) Zbl 1194.15019

G. Bennett [Linear Algebra Appl. 82, 81–98 (1986; Zbl 0601.15014)] proved the inequality
\[ \|Ax\|_q\geq \lambda \|x\|_p, \]
where
\[ \|Ax\|_q^q=\sum_{j=1}^m\left (\sum_{k=1}^n a_{j,k}x_k \right )^q \text{ and } \lambda ^q=\min_{1\leq r\leq n}r^{-q/p}\sum_{j=1}^m\left (\sum_{k=1}^r a_{j,k}\right )^q, \]
for \(x=(x_1,\dots ,x_n)\), \(x_1\geq \cdots \geq x_n\geq 0\), \(p\geq 1\), \(0<q\leq p\), \(A=(a_{j,k})\), \(1\leq j\leq m\), \(1\leq k\leq n\) with \(a_{j,k}\geq 0\). The inequality is reversed when \(0<p\leq 1\) and \(q\geq p\) with min replaced by max in \(\lambda.\) The author gives an alternate proof of this result using the approach of J. Bergh [Math. Z. 202, No. 1, 147–149 (1989; Zbl 0661.46022)]. He then uses this inequality to prove the following theorem.
Theorem: Let \(0<p<1\), \(\alpha \geq 1\), \(\alpha p<1\), \(0\leq t\leq 1\), \(x_1\geq x_2\geq \cdots \geq 0\). Then
\[ \sum _{n=1}^\infty\left (\frac{1}{n^\alpha}\sum_{k=n}^\infty\left ( (k+t)^\alpha -(k+t-1)^\alpha \right )x_k\right )^p \leq \frac{1}{\alpha}B\left (\frac{1}{\alpha }-p,p+1\right )\sum_{n=1}^\infty x_n^p, \]
where \(B(x,y)\), \(x>0\), \(y>0\), is the beta function. Some consequences of this theorem are deduced in Section 4.

MSC:

15A45 Miscellaneous inequalities involving matrices

References:

[1] Alzer, H., Sharp bounds for the ratio of \(q\)-gamma functions, Math. Nachr., 222, 5-14 (2001) · Zbl 0968.33004
[2] Barza, S.; Persson, L.-E.; Soria, J., Sharp weighted multidimensional integral inequalities for monotone functions, Math. Nachr., 210, 43-58 (2000) · Zbl 0944.26025
[3] Bennett, G., Lower bounds for matrices, Linear Algebra Appl., 82, 81-98 (1986) · Zbl 0601.15014
[4] Bennett, G., Some elementary inequalities. II, Quart. J. Math. Oxford Ser. (2), 39, 385-400 (1988) · Zbl 0687.26007
[5] Bennett, G., Lower bounds for matrices. II, Canad. J. Math., 44, 54-74 (1992) · Zbl 0776.15012
[6] Bennett, G.; Grosse-Erdmann, K.-G., Weighted Hardy inequalities for decreasing sequences and functions, Math. Ann., 334, 489-531 (2006) · Zbl 1119.26018
[7] Bennett, G.; Jameson, G., Monotonic averages of convex functions, J. Math. Anal. Appl., 252, 410-430 (2000) · Zbl 0972.26007
[8] Bergh, J., Hardy’s inequality—A complement, Math. Z., 202, 147-149 (1989) · Zbl 0661.46022
[9] Bergh, J.; Burenkov, V. I.; Persson, L.-E., Best constants in reversed Hardy’s inequalities for quasimonotone functions, Acta Sci. Math. (Szeged), 59, 221-239 (1994) · Zbl 0805.26008
[10] Bergh, J.; Burenkov, V. I.; Persson, L.-E., On some sharp reversed Hölder and Hardy type inequalities, Math. Nachr., 169, 19-29 (1994) · Zbl 0829.26008
[11] Burenkov, V. I., On the exact constant in the Hardy inequality with \(0 < p < 1\) for monotone functions, Proc. Steklov Inst. Math., 194, 59-63 (1993)
[12] Carro, M. J.; Raposo, J. A.; Soria, J., Recent developments in the theory of Lorentz spaces and weighted inequalities, Mem. Amer. Math. Soc., 187 (2007), 128 pp · Zbl 1126.42005
[13] Gao, P., Sums of powers and majorization, J. Math. Anal. Appl., 340, 1241-1248 (2008) · Zbl 1138.26015
[14] Gao, P., On a result of Levin and Stečkin · Zbl 1264.26026
[15] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities (1952), Cambridge Univ. Press · Zbl 0047.05302
[16] Lai, S.-Z., Weighted norm inequalities for general operators on monotone functions, Trans. Amer. Math. Soc., 340, 811-836 (1993) · Zbl 0819.47044
[17] Levin, V. I.; Stečkin, S. B., Inequalities, Amer. Math. Soc. Transl. Ser. 2, 14, 1-29 (1960) · Zbl 0100.04503
[18] Lyons, R., A lower bound on the Cesàro operator, Proc. Amer. Math. Soc., 86, 694 (1982) · Zbl 0503.47006
[19] Neugebauer, C. J., Weighted norm inequalities for averaging operators of monotone functions, Publ. Mat., 35, 429-447 (1991) · Zbl 0746.42014
[20] Rhoades, B. E.; Sen, P., Lower bounds for some factorable matrices, Int. J. Math. Math. Sci., 2006 (2006), Art. ID 76135, 13 pp · Zbl 1136.47019
[21] Stepanov, V., The weighted Hardy’s inequality for nonincreasing functions, Trans. Amer. Math. Soc., 338, 173-186 (1993) · Zbl 0786.26015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.