×

Lattice path counting and \(M/M/c\) queueing systems. (English) Zbl 0836.60099

The transient solution of \(M/M/c\) queue in a closed form is obtained for the probability of exactly \(i\) arrivals and \(j\) departures within a time interval of length \(t\). The method is based on the well-known combinatorial considerations: the authors count the paths from the origin to \((i,j)\) that have exactly \(r(d)\) \(x\)-steps whose depth from the line \(y = x\) is \(d = 0, \dots, c - 1\). Some numerical examples are considered.

MSC:

60K25 Queueing theory (aspects of probability theory)
90B22 Queues and service in operations research
Full Text: DOI

References:

[1] O.J. Boxma, The joint arrival and departure process for theM/M/1 queue, Stat. Neerlandica 38 (1984) 199-208. · Zbl 0546.60092 · doi:10.1111/j.1467-9574.1984.tb01110.x
[2] W. Böhm and S.G. Mohanty, The transient solution ofM/M/1 queues under(M, N)-policy. A combinatorial approach, J. Stat. Plann. Inference 34 (1993) 23-33. · Zbl 0777.05004 · doi:10.1016/0378-3758(93)90031-Z
[3] D.G. Champernowne, An elementary method of the solution of the queueing problem with a single server and constant parameter, J. Roy. Stat. Soc. Ser. B18 (1956) 125-128. · Zbl 0073.13003
[4] D. Gross and C.M. Harris,Fundamentals of Queueing Theory (Wiley, New York, 1985). · Zbl 0658.60122
[5] J. Medhi,Stochastic Models in Queueing Theory (Academic Press, New York, 1991). · Zbl 0743.60100
[6] S.G. Mohanty,Lattice Path Counting and Applications (Academic Press, New York, 1979). · Zbl 0455.60013
[7] S.G. Mohanty and W. Panny, A discrete-time analogue of theM/M/1 queue and the transient solution: A geometric approach, Sankhy?, Ser. A, 52 (1990) 364-370. · Zbl 0732.60102
[8] P.R. Parthasarathy, A transient solution to anM/M/1 queue: a simple approach, Adv. Appl. Prob. (1987) 997-998. · Zbl 0632.60098
[9] P.R. Parthasarathy and M. Sharafali, Transient solution to the many server Poisson queue: a simple approach, J. Appl. Prob. 26 (1989) 584-594. · Zbl 0693.60076 · doi:10.2307/3214415
[10] C.D. Pegden and M. Rosenshine, Some new results for theM/M/1 queue, Manag. Sci. 28 (1982) 821-828. · Zbl 0484.60075 · doi:10.1287/mnsc.28.7.821
[11] T.L. Saaty, Time dependent solution of many server Poisson queue, Oper. Res. 8 (1960) 755-772. · Zbl 0105.11702 · doi:10.1287/opre.8.6.755
[12] K. Sen and J.L. Jain, Combinatorial approach to Markovian queueing models, J. Stat. Plann. Inference 34 (1993) 269-279. · Zbl 0766.60117 · doi:10.1016/0378-3758(93)90011-T
[13] K. Sen, J.L. Jain and J.M. Gupta, Lattice path approach to transient solution ofM/M/1 with (0,k) control policy, J. Stat. Plann. Inference 34 (1993) 259-267. · Zbl 0765.60099 · doi:10.1016/0378-3758(93)90010-4
[14] O.P. Sharma,Markovian Queues (Ellis Horwood, Chichester, 1990).
[15] L. Takács, A generalization of the ballot problem and its application in the theory of queues, J. Amer. Stat. Ass. 57 (1962) 327-337. · Zbl 0109.36702 · doi:10.2307/2281642
[16] L. Takács, A single server queues with recurrent input and exponentially distributed service times, Oper. Res. 10 (1962) 395-399. · Zbl 0285.60089 · doi:10.1287/opre.10.3.395
[17] L. Takács, A combinatorial method in the theory of queues, SIAM J. Appl. Math. 10 (1962) 691-694. · Zbl 0118.13503 · doi:10.1137/0110053
[18] D. Towsley, An application of the reflection principle to the transient analysis of theM/M/1 queue, Naval. Res. Logist. 34 (1987) 451-456. · Zbl 0665.60103 · doi:10.1002/1520-6750(198706)34:3<451::AID-NAV3220340310>3.0.CO;2-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.