×

Mid-term bio-economic optimization of multi-species fisheries. (English) Zbl 1481.91136

Summary: In this paper, we analyze the dynamics of a multi-species fisheries system in the presence of harvesting. We solve the problem of finding the optimal harvesting strategy for a mid-term horizon with a fixed final stock of each species, while maximizing the expected present value of total revenues. The problem is formulated as an optimal control problem. For its solution, we combine techniques derived from Pontryagin’s Maximum Principle, cyclic coordinate descent and the shooting method. The algorithm we develop can solve problems both with inter-species competition and with predator-prey behaviors. Several numerical examples are presented to illustrate the different possibilities of the method and a study of the dependence of the behavior on some parameters is performed.

MSC:

91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
49N90 Applications of optimal control and differential games
92D40 Ecology
Full Text: DOI

References:

[1] Perman, R.; Ma, Y.; McGilvray, J.; Common, M., Natural Resource & Environmental Economics (2003), Pearson Education: Pearson Education Harlow, England
[2] Kennedy, J., Dynamic Programming: Applications to Agriculture and Natural Resources (2012), Springer Science & Business Media
[3] Cardenas, J. C.; Janssen, M.; Bousquet, F., Dynamics of rules and resources: three new field experiments on water, forests and fisheries., Handbook on Experimental Economics and the Environment (2013), Edward Elgar Publishing
[4] Beverton, R.; Holt, S. J., On the Dynamics of Exploited Fish Populations, 11 (2012), Springer Science & Business Media
[5] Hilborn, R.; Walters, C. J., Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (2013), Springer Science & Business Media
[6] Bettinger, P., Forest Management and Planning (2016), Academic Press
[7] Mays, L. W., Optimal Control of Hydrosystems: 0 (2018), CRC Press
[8] Sundström, O.; Ambühl, D.; Guzzella, L., On implementation of dynamic programming for optimal control problems with final state constraints, Oil Gas Sci. Technol. Revue de l’Institut Français du Pétrole, 65, 1, 91-102 (2010)
[9] Kronbak, L. G.; Squires, D.; Vestergaard, N., Recent developments in fisheries economics research, Int. Rev. Environ. Res. Econ., 7, 67-108 (2014)
[10] Grüne, L.; Semmler, W.; Stieler, M., Using nonlinear model predictive control for dynamic decision problems in economics, J. Econ. Dyn. Control, 60, 112-133 (2015) · Zbl 1401.93094
[11] Prouzet, P., Value and Economy of Marine Resources (2015), John Wiley & Sons: John Wiley & Sons New York
[12] Schlüter, M., New horizons for managing the environment: a review of coupled social-ecological systems modeling, Nat. Resour. Model., 25, 219-272 (2012)
[13] de Jonge, V. N.; Pinto, R.; Turner, R. K., Integrating ecological, economic and social aspects to generate useful management information under the EU directives’ ‘ecosystem approach’, Ocean Coast. Manag., 68, 169-188 (2012)
[14] Brown, L. R., Eco-economy: Building an Economy for the Earth (2013), Routledge
[15] Kasperski, S., Optimal multi-species harvesting in ecologically and economically interdependent fisheries, Environ. Resour. Econ., 61, 4, 517-557 (2015)
[16] Speers, A. E.; Besedin, E. Y.; Palardy, J. E.; Moore, C., Impacts of climate change and ocean acidification on coral reef fisheries: an integrated ecological-economic model, Ecol. Econ., 128, 33-43 (2016)
[17] Poudel, D.; Sandal, L. K.; Kvamsdal, S. F., Analyzing risk of stock collapse in a fishery under stochastic profit maximization, discussion paper, Norwegian School of Econ. Bus. Admin., 4, 1-23 (2012)
[18] Shah, M. A., Optimal control theory and fishery model, J. Dev. Agric. Econ., 5, 12, 476-481 (2013)
[19] Qiu, H.; Lv, J.; Wang, K., The optimal harvesting policy for non-autonomous populations with discount, Appl. Math. Lett., 26, 244-248 (2013) · Zbl 1251.92045
[20] Tsur, Y.; Zemel, A., The infinite horizon dynamic optimization problem revisited: A simple method to determine equilibrium states, Eur. J. Oper. Res., 131, 3, 482-490 (2001) · Zbl 0990.90575
[21] Suri, R., Optimal Harvesting Strategies for Fisheries: A Differential Equations Approach, Massey University New Zealand (2008)
[22] Bayón, L.; García-Nieto, P. J.; García-Rubio, R.; Otero, J. A.; Suárez, P. M.; Tasis, C., An algorithm for quasi-linear control problems in the economics of renewable resources: The steady state and end state for the infinite and long-term horizon, J. Comput. Appl. Math., 309, 456-472 (2017) · Zbl 1346.49041
[23] Matsuda, H.; Abrams, P. A., Maximal yields from multispecies fisheries systems: rules for systems with multiple trophic levels, Ecol. Appl., 16, 225-237 (2006)
[24] Kellner, J. B.; Sanchirico, J. N.; Hastings, A.; Mumby, P. J., Optimizing for multiple species and multiple values: tradeoffs inherent in ecosystem-based fisheries management, Conserv. Lett., 4, 1, 21-30 (2011)
[25] Legović, T.; Klanjšček, J.; Geček, S., Maximum sustainable yield and species extinction in ecosystems, Ecol. Modell., 221, 12, 1569-1574 (2010)
[26] Legović, T.; Geček, S., Impact of maximum sustainable yield on mutualistic communities, Ecol. Modell., 230, 63-72 (2012)
[27] Kar, T. K.; Ghorai, A., Dynamic behaviour of a delayed predator-prey model with harvesting, Appl. Math. Comput., 217, 22, 9085-9104 (2011) · Zbl 1215.92065
[28] Agnarsson, S.; Arnason, R.; Johannsdottir, K.; Ravn-Jonsen, L.; Sandal, L. K.; Steinshamn, S. I.; Vestergaard, N., Comparative evaluation of the fisheries policies in denmark, Iceland and Norway: multispecies and stochastic issues (2008), Bergen, Norway
[29] Aanestad, S.; Sandal, L. K.; Eide, A., Optimal fishing policy for two species in a three species predator-prey model. the case of capelin, cod and juvenile herring in the Barents sea (2009), Bergen Norway
[30] Poudel, D.; Sandal, L. K., Stochastic optimization for multispecies fisheries in the barents sea, Natur. Resour. Model., 28, 219-243 (2015) · Zbl 1542.91259
[31] Agmour, I.; Bentounsi, M.; Achtaich, N.; Foutayeni, Y., Optimization of the two fishermen’s profits exploiting three competing species where prices depend on harvest, 2017, 3157294 (2017) · Zbl 1487.92060
[32] Plagányi, E. E., Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity, Fish Fish., 15, 1, 1-22 (2014)
[33] Tyrrell, M. C.; Link, J. S.; Moustahfid, H., The importance of including predation in fish population models: implications for biological reference points, Fish. Res., 108, 1, 1-8 (2011)
[34] Kissling, W. D., Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents, J. Biogeogr., 39, 12, 2163-2178 (2012)
[35] Linder, M., Climate change and european forests: what do we know, what are the uncertainties, and what are the implications for forest management?, J. Environ. Manag. Vol., 146, 69-83 (2014)
[36] Yousefpour, R., A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change, Ann. Forest Sci., 69, 1-15 (2012)
[37] Kvamsdal, S. F.; Poudel, D.; Sandal, L. K., Harvesting in a fishery with stochastic growth and a mean-reverting price, Environ. Resour. Econ., 63, 643-663 (2016)
[38] Chiang, A., Elements of Dynamic Optimization (2000), Waveland Press
[39] Aronna, M. S.; Bonnans, J. F.; Martinon, P., A shooting algorithm for optimal control problems with singular arcs, J. Optim. Theory Appl., 158, 2, 419-459 (2013) · Zbl 1275.49045
[40] Luo, Z. Q.; Tseng, P., On the convergence of the coordinate descent method for convex differentiable minimization, J. Optim. Theory Appl., 72, 1, 7-35 (1992) · Zbl 0795.90069
[41] Brannstrom, A.; Sumpter, D. J.T., The role of competition and clustering in population dynamics, Proc. R. Soc. B, 272, 2065-2072 (2005)
[42] Sandal, L. K.; Steinshamn, S. I., A stochastic feedback model for optimal management of renewable resources, Nat. Resour. Model., 10, 1, 31-52 (1997) · Zbl 0928.91036
[43] Zangwill, W. L., Nonlinear Programming: a Unified Approach (1969), Prentice Hall: Prentice Hall New Jersey · Zbl 0195.20804
[44] Bayón, L.; Grau, J. M.; Ruiz, M. M.; Suárez, P. M., Cyclic coordinate descent in hydrothermal nonsmooth problems., Numer. Algor., 59, 227-247 (2012) · Zbl 1238.65056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.