×

The Bayesian formulation of EIT: analysis and algorithms. (English) Zbl 1348.62104

Summary: We provide a rigorous Bayesian formulation of the EIT problem in an infinite dimensional setting, leading to well-posedness in the Hellinger metric with respect to the data. We focus particularly on the reconstruction of binary fields where the interface between different media is the primary unknown. We consider three different prior models – log-Gaussian, star-shaped and level set. Numerical simulations based on the implementation of MCMC are performed, illustrating the advantages and disadvantages of each type of prior in the reconstruction, in the case where the true conductivity is a binary field, and exhibiting the properties of the resulting posterior distribution.

MSC:

62G05 Nonparametric estimation
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
92C55 Biomedical imaging and signal processing

Software:

EIDORS

References:

[1] A. Adler, Uses and abuses of EIDORS: An extensible software base for EIT,, Physiological Measurement, 27 (2006) · doi:10.1088/0967-3334/27/5/S03
[2] G. Alessandrini, Stable determination of an inclusion by boundary measurements,, Applicable Analysis: An International Journal, 27, 153 (1988) · Zbl 0616.35082 · doi:10.1080/00036818808839730
[3] M. Bédard, Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234,, Stochastic Processes and their Applications, 118, 2198 (2008) · Zbl 1155.60310 · doi:10.1016/j.spa.2007.12.005
[4] A. Beskos, Sequential Monte Carlo methods for Bayesian elliptic inverse problems,, Statistics and Computing, 25, 727 (2015) · Zbl 1331.65012 · doi:10.1007/s11222-015-9556-7
[5] A. Beskos, MCMC methods for diffusion bridges,, Stochastics and Dynamics, 8, 319 (2008) · Zbl 1159.65007 · doi:10.1142/S0219493708002378
[6] V. I. Bogachev, <em>Measure Theory Volume I</em>,, Springer (2007) · Zbl 1120.28001 · doi:10.1007/978-3-540-34514-5
[7] L. Borcea, Electrical impedance tomography,, Inverse Problems, 18 (2002) · Zbl 1031.35147 · doi:10.1088/0266-5611/18/6/201
[8] T. Bui-Thanh, An analysis of infinite dimensional bayesian inverse shape acoustic scattering and its numerical approximation,, SIAM/ASA Journal on Uncertainty Quantification, 2, 203 (2014) · Zbl 1306.65270 · doi:10.1137/120894877
[9] S. L. Cotter, MCMC methods for functions modifying old algorithms to make them faster,, Statistical Science, 28, 424 (2013) · Zbl 1331.62132 · doi:10.1214/13-STS421
[10] M. Dashti, The Bayesian Approach to Inverse Problems,, In Handbook of Uncertainty Quantification, 1 (2016) · doi:10.1007/978-3-319-11259-6_7-1
[11] S. Duane, Hybrid monte carlo,, Physics Letters B, 195, 216 (1987) · doi:10.1016/0370-2693(87)91197-X
[12] J. N. Franklin, Well posed stochastic extensions of ill posed linear problems · Zbl 0198.20601 · doi:10.1016/0022-247X(70)90017-X
[13] M. Gehre, An analysis of finite element approximation in electrical impedance tomography,, Inverse Problems, 30, 0266 (2014) · Zbl 1288.78033 · doi:10.1088/0266-5611/30/4/045013
[14] M. Hairer, Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions,, The Annals of Applied Probability, 24, 2455 (2014) · Zbl 1307.65002 · doi:10.1214/13-AAP982
[15] R. P. Henderson, An impedance camera for spatially specific measurements of the thorax,, IEEE Transactions on Bio-Medical Engineering, 25, 250 (1978) · doi:10.1109/TBME.1978.326329
[16] M. A. Iglesias, Ensemble Kalman methods for inverse problems,, Inverse Problems, 29, 0266 (2013) · Zbl 1311.65064 · doi:10.1088/0266-5611/29/4/045001
[17] M. A. Iglesias, A bayesian level set method for geometric inverse problems,, Interfaces Free Bound., 18, 181 (2016) · Zbl 1353.65050 · doi:10.4171/IFB/362
[18] J. P. Kaipio, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography,, Inverse Problems, 16, 1487 (2000) · Zbl 1044.78513 · doi:10.1088/0266-5611/16/5/321
[19] J. P. Kaipio, Inverse problems with structural prior information,, Inverse Problems, 15, 713 (1999) · Zbl 0949.65144 · doi:10.1088/0266-5611/15/3/306
[20] J. P. Kaipio, <em>Statistical and Computational Inverse Problems</em>,, Springer (2005) · Zbl 1068.65022
[21] R. E. Kass, Markov Chain Monte Carlo in practice: A roundtable discussion,, The American Statistician, 52, 93 (1998) · doi:10.2307/2685466
[22] C. E. Kenig, The Calderón problem with partial data on manifolds and applications,, Analysis and PDE, 6, 2003 (2013) · Zbl 1335.35301 · doi:10.2140/apde.2013.6.2003
[23] K. Knudsen, D-bar method for electrical impedance tomography with discontinuous conductivities,, SIAM Journal on Applied Mathematics, 67, 893 (2007) · Zbl 1123.35091 · doi:10.1137/060656930
[24] K. Knudsen, Reconstructions of piecewise constant conductivities by the D-bar method for electrical impedance tomography,, Journal of Physics: Conference Series, 124 (2008) · doi:10.1088/1742-6596/124/1/012029
[25] K. Knudsen, Regularized D-bar method for the inverse conductivity problem,, Inverse Problems and Imaging, 3, 599 (2009) · Zbl 1184.35314 · doi:10.3934/ipi.2009.3.599
[26] V. Kolehmainen, Recovering boundary shape and conductivity in electrical impedance tomography,, Inverse Problems and Imaging, 7, 217 (2013) · Zbl 1267.35254 · doi:10.3934/ipi.2013.7.217
[27] S. Lan, Emulation of Higher-Order Tensors in Manifold Monte Carlo Methods for Bayesian Inverse Problems,, Journal of Computational Physics, 308, 81 (2016) · Zbl 1352.65010 · doi:10.1016/j.jcp.2015.12.032
[28] R. E. Langer, An inverse problem in differential equations,, Bulletin of the American Mathematical Society, 39, 814 (1933) · JFM 59.0440.01 · doi:10.1090/S0002-9904-1933-05752-X
[29] S. Lasanen, Non-gaussian statistical inverse problems. part I: Posterior distributions,, Inverse Problems & Imaging, 6, 215 (2012) · Zbl 1263.62041 · doi:10.3934/ipi.2012.6.215
[30] S. Lasanen, Non-gaussian statistical inverse problems. part II: Posterior convergence for approximated unknowns,, Inverse Problems & Imaging, 6, 267 (2012) · Zbl 1263.62042 · doi:10.3934/ipi.2012.6.267
[31] S. Lasanen, Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography,, Inverse Problems and Imaging, 8, 561 (2014) · Zbl 1302.65245 · doi:10.3934/ipi.2014.8.561
[32] M. Lassas, Discretization-invariant Bayesian inversion and Besov space priors,, Inverse Problems and Imaging, 3, 87 (2009) · Zbl 1191.62046 · doi:10.3934/ipi.2009.3.87
[33] M. S. Lehtinen, Linear inverse problems for generalised random variables,, Inverse Problems, 5, 599 (1989) · Zbl 0681.60015 · doi:10.1088/0266-5611/5/4/011
[34] A. Mandelbaum, Linear estimators and measurable linear transformations on a Hilbert space,, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 65, 385 (1984) · Zbl 0506.60004 · doi:10.1007/BF00533743
[35] A. I. Nachman, Reconstructions from boundary measurements,, Annals of Mathematics, 128, 531 (1988) · Zbl 0675.35084 · doi:10.2307/1971435
[36] A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Annals of Mathematics, 143, 71 (1996) · Zbl 0857.35135 · doi:10.2307/2118653
[37] G. C. Papanicolaou, Network approximation for transport properties of high contrast materials,, SIAM Journal on Applied Mathematics, 58, 501 (1998) · Zbl 0917.35137 · doi:10.1137/S0036139996301891
[38] M. Salo, Calderón problem,, Lecture Notes. · Zbl 1316.35301
[39] D. Schymura, An upper bound on the volume of the symmetric difference of a body and a congruent copy,, Advances in Geometry, 14, 287 (2014) · Zbl 1302.51015 · doi:10.1515/advgeom-2013-0029
[40] E. Somersalo, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM Journal on Applied Mathematics, 52, 1023 (1992) · Zbl 0759.35055 · doi:10.1137/0152060
[41] A. M. Stuart, Inverse problems: A Bayesian perspective,, Acta Numerica, 19, 451 (2010) · Zbl 1242.65142 · doi:10.1017/S0962492910000061
[42] J. Sylvester, A global uniqueness theorem for an inverse boundary value,, Annals of Mathematics, 125, 153 (1987) · Zbl 0625.35078 · doi:10.2307/1971291
[43] L. Tierney, Markov chains for exploring posterior distributions,, Annals of Statistics, 22, 1701 (1994) · Zbl 0829.62080 · doi:10.1214/aos/1176325750
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.