×

Hyperfunctions, formal groups and generalized Lipschitz summation formulas. (English) Zbl 1254.43008

The purpose of the paper is to establish a connection between hyperfunctions and some topics of mathematical physics and analytic number theory. The authors relate hyperfunctions with formal groups and generalizations of the classical Lipschitz formula. It involves new polylogarithmic rational functions constructed via the Fourier expansion of certain sequences of Bernoulli type polynomials related to the Lazard formal group. They finally study the class of Appell polynomials, that is a more general class of Bernoulli type polynomials, to construct associate families of hyperfunctions.
Reviewer: Dohan Kim (Seoul)

MSC:

43A35 Positive definite functions on groups, semigroups, etc.
46F15 Hyperfunctions, analytic functionals
43A55 Summability methods on groups, semigroups, etc.
33C65 Appell, Horn and Lauricella functions

References:

[1] Sato, M.; Kawai, T.; Kashiwara, M., Microfunctions and pseudo-differential operators, (Hyperfunctions and Pseudo-Differential Equations. Hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Math., vol. 287 (1973), Springer: Springer Berlin), 265-529
[2] Hörmander, L., The Analysis of Partial Differential Operators I (1990), Springer-Verlag · Zbl 0712.35001
[3] Wakabayashi, S., (Classical Microlocal Analysis in the Space of Hyperfunctions. Classical Microlocal Analysis in the Space of Hyperfunctions, Lecture Notes in Mathematics, vol. 1737 (2000), Springer) · Zbl 0949.35003
[4] Marmi, S.; Moussa, P.; Yoccoz, J.-C., Complex Brjuno functions, J. Amer. Math. Soc., 14, 783-841 (2001) · Zbl 1051.37021
[5] G. Carlet, B. Dubrovin, L.P. Mertens, Infinite-dimensional Frobenius manifolds for (2+1) integrable systems, 2009. arXiv:0902.1245; G. Carlet, B. Dubrovin, L.P. Mertens, Infinite-dimensional Frobenius manifolds for (2+1) integrable systems, 2009. arXiv:0902.1245 · Zbl 1208.53090
[6] Bruggeman, R., Automorphic forms, hyperfunction cohomology, and period functions, J. Reine Angew. Math., 492, 1-39 (1997) · Zbl 0914.11023
[7] Pribitkin, W., Laplace’s integral, the gamma function, and beyond, Amer. Math. Monthly, 109, 235-245 (2002) · Zbl 1029.44001
[8] Serre, J.-P., (Lie Algebras and Lie Groups. Lie Algebras and Lie Groups, Lecture Notes in Mathematics, vol. 1500 (1992), Springer-Verlag) · Zbl 0742.17008
[9] Tempesta, P., Formal groups, Bernoulli-type polynomials and \(L\)-series, C. R. Math. Acad. Sci. Paris Ser. I, 345, 303-306 (2007) · Zbl 1163.11063
[10] Pasles, P. C.; Pribitkin, W., A generalization of the Lipschitz summation formula and some applications, Proc. Amer. Math. Soc., 129, 3177-3184 (2001) · Zbl 1125.11322
[11] Kaneko, A., Introduction to Hyperfunctions (1988), Kluwer Academic Publisher · Zbl 0687.46027
[12] (Pham, A., Hyperfunctions and Theoretical Physics. Hyperfunctions and Theoretical Physics, Lecture Notes in Mathematics, vol. 449 (1975), Springer-Verlag) · Zbl 0293.00011
[13] (Lewin, L., Structural Properties of Polylogarithms. Structural Properties of Polylogarithms, Math. Surveys Monogr, vol. 37 (1991), AMS) · Zbl 0745.33009
[14] Zagier, D., The dilogarithm function, (Cartier, P.; Julia, B.; Moussa, P.; Vanhove, P., Frontiers in Number Theory, Physics and Geometry II (2007), Springer), 3-65 · Zbl 1176.11026
[15] (Waldschmidt, M.; Moussa, P.; Luck, J. M.; Itzykson, C., From Number Theory to Physics (1992), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0784.00021
[16] Hazewinkel, M., Formal Groups and Applications (1978), Academic Press: Academic Press New York · Zbl 0454.14020
[17] Bukhstaber, V. M.; Mishchenko, A. S.; Novikov, S. P., Formal groups and their role in the apparatus of algebraic topology, Uspehi Matem. Nauk, 26, 63-90 (1971) · Zbl 0226.55007
[18] Clarke, F., The universal von Staudt theorems, Trans. Amer. Math. Soc., 315, 591-603 (1989) · Zbl 0683.10013
[19] Tempesta, P., On Appell sequences of polynomials of Bernoulli and Euler type, J. Math. Anal. Appl., 341, 1295-1310 (2008) · Zbl 1176.11007
[20] Tempesta, P., \(L\)-series and Hurwitz zeta functions associated with the universal formal group, Ann. Sc. Norm. Super. Pisa Cl. Sci., IX, 1-12 (2010)
[21] Ireland, K.; Rosen, M., A Classical Introduction to Modern Number Theory (1982), Springer-Verlag · Zbl 0482.10001
[22] Baker, A.; Clarke, F.; Ray, N.; Schwartz, L., On the Kummer congruences and the stable homotopy of BU, Trans. Amer. Math. Soc., 316, 385-432 (1989) · Zbl 0709.55012
[23] Ray, N., Stirling and Bernoulli numbers for complex oriented homology theory, (Carlsson, G.; Cohen, R. L.; Miller, H. R.; Ravenel, D. C., Algebraic Topology. Algebraic Topology, Lecture Notes in Math., vol. 1370 (1986), Springer-Verlag), 362-373 · Zbl 0698.55002
[24] Adelberg, A., Universal higher order Bernoulli numbers and Kummer and related congruences, J. Number Theory, 84, 119-135 (2000) · Zbl 0971.11004
[25] Adelberg, A.; Hong, S.; Ren, W., Bounds of divided universal Bernoulli numbers and universal Kummer congruences, Proc. Amer. Math. Soc., 136, 1, 61-71 (2008) · Zbl 1126.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.