×

On stratification for spaces with Noetherian mod \(p\) cohomology. (English) Zbl 1505.55022

Let \(X\) be a topological space with Noetherian mod \(p\) cohomology and let \(C^*(X;\mathbb{F}_p)\) be the commutative ring spectrum of \(\mathbb{F}_p\)-valued cochains on \(X\). This paper aims to exhibit conditions under which the category of module spectra on \(C^*(X;\mathbb{F}_p)\) is stratified in the sense of Benson, Iyengar, Krause (cf. [D. J. Benson et al., Ann. Math. (2) 174, No. 3, 1643–1684 (2011; Zbl 1261.20057)]), providing a classification of all its localizing subcategories. The authors consider some families of naturally occurring examples, including the classifying spaces of Kac-Moody groups and spaces \(X\) that admit an \(H\)-space structure. For these families they show that the category of module spectra over the corresponding cochain ring spectrum is stratified. Furthemore, they consider spaces that are \(p\)-good in the sense of A. K. Bousfield and D. M. Kan [Homotopy limits, completions and localizations. Springer, Cham (1972; Zbl 0259.55004)], and with Noetherian mod-\(p\) cohomology. For such spaces they show that the existence of a stratification for the corresponding categories of module spectra is equivalent to a condition that generalizes Chouinard’s theorem for finite groups in a homotopy theoretic context [L. G. Chouinard, J. Pure Appl. Algebra 7, 287–302 (1976; Zbl 0327.20020)]. In particular, using the work of Benson-Iyengar-Krause [D. Benson et al., Ann. Sci. Éc. Norm. Supér. (4) 41, No. 4, 575–621 (2008; Zbl 1171.18007)], this relates the generalized telescope conjecture in this setting to a question in unstable homotopy theory. The paper is very clearly written and is a remarkable example of a beautiful interaction between stable and unstable homotopy theory.

MSC:

55P42 Stable homotopy theory, spectra
55R35 Classifying spaces of groups and \(H\)-spaces in algebraic topology

References:

[1] J. Aguadé and A. Ruiz, Maps between classifying spaces of Kac-Moody groups, Adv. Math. 178 (2003), no. 1, 66-98. · Zbl 1029.55013
[2] G. S. Avrunin and L. L. Scott, Quillen stratification for modules, Invent. Math. 66 (1982), no. 2, 277-286. · Zbl 0489.20042
[3] P. Balmer, I. Dell’Ambrogio, and B. Sanders, Grothendieck-Neeman duality and the Wirthmüller isomorphism, Compos. Math. 152 (2016), no. 8, 1740-1776. · Zbl 1408.18026
[4] T. Barthel, N. Castellana, D. Heard, and G. Valenzuela, Stratification and duality for homotopical groups, Adv. Math. 354 (2019), 106733. · Zbl 1426.55017
[5] T. Barthel, D. Heard, and G. Valenzuela, Local duality for structured ring spectra, J. Pure Appl. Algebra 222 (2018), no. 2, 433-463. · Zbl 1384.55008
[6] D. J. Benson and J. Greenlees, Stratifying the derived category of cochains on BG for G a compact Lie group, J. Pure Appl. Algebra 218 (2014), no. 4, 642-650. · Zbl 1291.18014
[7] D. J. Benson, S. B. Iyengar, and H. Krause, Local cohomology and support for triangulated cate-gories, Ann. Sci.Éc. Norm. Supér. (4) 41 (2008), no. 4, 573-619.
[8] , Stratifying modular representations of finite groups, Ann. of Math. (2) 174 (2011), no. 3, 1643-1684. · Zbl 1261.20057
[9] , Stratifying triangulated categories, J. Topol. 4 (2011), no. 3, 641-666. · Zbl 1239.18013
[10] D. J. Benson, J. F. Carlson, and J. Rickard, Complexity and varieties for infinitely generated mod-ules. II, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 4, 597-615. · Zbl 0888.20003
[11] , Colocalizing subcategories and cosupport, J. Reine Angew. Math. 673 (2012), 161-207. · Zbl 1271.18012
[12] A. K. Bousfield, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994), no. 4, 831-873. · Zbl 0839.55008
[13] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin, 1972. · Zbl 0259.55004
[14] C. Broto, J. A. Crespo, and L. Saumell, Non-simply connected H-spaces with finiteness conditions, Math. Proc. Cambridge Philos. Soc. 130 (2001), no. 3, 475-488. · Zbl 1002.55007
[15] C. Broto and N. Kitchloo, Classifying spaces of Kac-Moody groups, Math. Z. 240 (2002), no. 3, 621-649. · Zbl 1031.55009
[16] C. Broto, R. Levi, and B. Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779-856. · Zbl 1033.55010
[17] , Discrete models for the p-local homotopy theory of compact Lie groups and p-compact groups, Geom. Topol. 11 (2007), 315-427. · Zbl 1135.55008
[18] C. Broto and S. Zarati, Nil-localization of unstable algebras over the Steenrod algebra, Math. Z. 199 (1988), no. 4, 525-537. · Zbl 0639.55012
[19] W. Bruns and J. Gubeladze, Polytopes, Rings, and K-Theory, Springer Monogr. Math., Springer-Verlag, Dordrecht, 2009. · Zbl 1168.13001
[20] J. C. Cameron, On the Duflot filtration for equivariant cohomology rings, Ph.D. thesis, University of Washington, 2018, https://digital.lib.washington.edu/researchworks/handle/1773/42460.
[21] N. Castellana, J. A. Crespo, and J. Scherer, Deconstructing Hopf spaces, Invent. Math. 167 (2007), no. 1, 1-18. · Zbl 1109.55005
[22] A. Chermak, Fusion systems and localities, Acta Math. 211 (2013), no. 1, 47-139. · Zbl 1295.20021
[23] L. G. Chouinard, Projectivity and relative projectivity over group rings, J. Pure Appl. Algebra 7 (1976), no. 3, 287-302. · Zbl 0327.20020
[24] I. Dell’Ambrogio and D. Stanley, Affine weakly regular tensor triangulated categories, Pacific J. Math. 285 (2016), no. 1, 93-109. · Zbl 1360.18021
[25] W. G. Dwyer, Strong convergence of the Eilenberg-Moore spectral sequence, Topology 13 (1974), 255-265. · Zbl 0303.55012
[26] W. G. Dwyer, J. P. C. Greenlees, and S. Iyengar, Duality in algebra and topology, Adv. Math. 200 (2006), no. 2, 357-402. · Zbl 1155.55302
[27] W. G. Dwyer and C. W. Wilkerson, The fundamental group of a p-compact group, Bull. Lond. Math. Soc. 41 (2009), no. 3, 385-395. · Zbl 1170.55006
[28] W. G. Dwyer and A. Zabrodsky, Maps between classifying spaces, Algebraic Topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer-Verlag, Berlin, 1987, pp. 106-119. · Zbl 0646.55007
[29] E. D. Farjoun, Cellular Spaces, Null Spaces and Homotopy Localization, Lecture Notes in Math., vol. 1622, Springer-Verlag, Berlin, 1996.
[30] P. G. Goerss and J. F. Jardine, Simplicial Homotopy Theory. Reprint of the 1999 edition, Mod. Birkhäuser Class., Birkhäuser Verlag, Basel, 2009. · Zbl 1195.55001
[31] H.-W. Henn, Unstable modules over the Steenrod algebra and cohomology of groups, Group Repre-sentations: Cohomology, Group Actions and Topology (Seattle, WA, 1996), Proc. Sympos. Pure Math., vol. 63, Amer. Math. Soc., Providence, RI, 1998, pp. 277-300. · Zbl 0889.55008
[32] H.-W. Henn, J. Lannes, and L. Schwartz, The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects, Amer. J. Math. 115 (1993), no. 5, 1053-1106. · Zbl 0805.55011
[33] , Localizations of unstable A-modules and equivariant mod p cohomology, Math. Ann. 301 (1995), no. 1, 23-68. · Zbl 0869.55016
[34] M. Hovey and J. H. Palmieri, Stably thick subcategories of modules over Hopf algebras, Math. Proc. Cambridge Philos. Soc. 130 (2001), no. 3, 441-474. · Zbl 0998.16029
[35] M. Hovey, J. H. Palmieri, and N. P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114. · Zbl 0881.55001
[36] D. M. Kan, A combinatorial definition of homotopy groups, Ann. of Math. (2) 67 (1958), 282-312. · Zbl 0091.36901
[37] N. Kitchloo, On the topology of Kac-Moody groups, Math. Z. 276 (2014), no. 3-4, 727-756. · Zbl 1358.20046
[38] N. R. Kitchloo, Topology of Kac-Moody groups, Ph.D. thesis, Massachusetts Institute of Technol-ogy, 1998.
[39] P. H. Kropholler and G. Mislin, Groups acting on finite-dimensional spaces with finite stabilizers, Comment. Math. Helv. 73 (1998), no. 1, 122-136. · Zbl 0927.20033
[40] S. Kumar, Kac-Moody Groups, Their Flag Varieties and Representation Theory, Progr. Math., vol. 204, Birkhäuser Boston, Boston, MA, 2002. · Zbl 1026.17030
[41] J. Lannes, Sur la cohomologie modulo p des p-groupes abéliensélémentaires, Homotopy Theory (Durham, 1985), London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 97-116. · Zbl 0654.55013
[42] , Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélień elémentaire. With an appendix by Michel Zisman, Publ. Math. Inst. HautesÉtudes Sci. (1992), no. 75, 135-244. · Zbl 0857.55011
[43] R. Levi and A. Libman, Existence and uniqueness of classifying spaces for fusion systems over discrete p-toral groups, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 47-70. · Zbl 1346.55015
[44] J. Lurie, Higher algebra, draft available from author’s website as http://www.math.harvard.edu/ ∼lurie/papers/HA.pdf, 2017.
[45] A. Mathew, The Galois group of a stable homotopy theory, Adv. Math. 291 (2016), 403-541. · Zbl 1338.55009
[46] A. Mathew, N. Naumann, and J. Noel, Derived induction and restriction theory, Geom. Topol. 23 (2019), no. 2, 541-636. · Zbl 1422.19001
[47] H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), no. 1, 39-87. · Zbl 0552.55014
[48] A. Neeman, The chromatic tower for D(R). With an appendix by Marcel Bökstedt, Topology 31 (1992), no. 3, 519-532. · Zbl 0793.18008
[49] D. Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549-572; ibid. (2) 94 (1971), 573-602. · Zbl 0247.57013
[50] K. Ragnarsson, Classifying spectra of saturated fusion systems, Algebr. Geom. Topol. 6 (2006), 195-252. · Zbl 1098.55012
[51] , Retractive transfers and p-local finite groups, Proc. Edinb. Math. Soc. (2) 51 (2008), no. 2, 465-487. · Zbl 1158.55019
[52] D. L. Rector, Noetherian cohomology rings and finite loop spaces with torsion, J. Pure Appl. Alge-bra 32 (1984), no. 2, 191-217. · Zbl 0543.57030
[53] J. Rognes, Galois extensions of structured ring spectra. Stably dualizable groups, Mem. Amer. Math. Soc. 192 (2008), no. 898, viii+137. · Zbl 1166.55001
[54] L. Schwartz, Unstable Modules over the Steenrod Algebra and Sullivan’s Fixed Point Set Conjec-ture, Chicago Lectures in Math., University of Chicago Press, Chicago, IL, 1994. · Zbl 0871.55001
[55] S. Shamir, Cellular approximations and the Eilenberg-Moore spectral sequence, Algebr. Geom. Topol. 9 (2009), no. 3, 1309-1340. · Zbl 1225.55004
[56] , Stratifying derived categories of cochains on certain spaces, Math. Z. 272 (2012), no. 3-4, 839-868. · Zbl 1271.55010
[57] L. Smith, On the characteristic zero cohomology of the free loop space, Amer. J. Math. 103 (1981), no. 5, 887-910 · Zbl 0475.55004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.