×

Depth and the Steenrod algebra (with an appendix by J. Lannes). (English) Zbl 0874.55017

Let \(p\) be a prime number and \(\mathbb{F}_p[u_1,\dots,u_n]\) be the graded polynomial ring on \(n\) variables of degree 1 if \(p=2\) and 2 if \(p>2\). Let \(\text{GL}_n(\mathbb{F}_p)\) be the group of invertible \(n\times n\) matrices over \(\mathbb{F}_p\). It is known that the ring of invariants \(D_n=(\mathbb{F}_p[u_1,\dots,u_n])^{\text{GL}_n(\mathbb{F}_p)}\) called the Dickson algebra is a graded polynomial ring \(\mathbb{F}_p[c_1,\dots,c_n]\) on the Dickson invariants. Let \(A\) be the \(\text{mod }p\) Steenrod algebra and \(M\) be an unstable \(\mathbb{F}_p[u_1,\dots,u_n]\)-\(A\)-module which is of finite type as \(\mathbb{F}_p[u_1,\dots,u_n]\)-module. The depth of \(M\) relative to the augmentation ideal of \(\mathbb{F}_p[u_1,\dots,u_n]\) is well defined and it is the length of a maximal regular sequence on \(M\). The main result of this paper is:
Theorem 1. Let \(M\) be an unstable \(\mathbb{F}_p[u_1,\dots,u_n]\)-\(A\)-module which is of finite type as an \(\mathbb{F}_p[u_1,\dots,u_n]\)-module. Then the depth of \(M\) is the largest \(r\) such that \(\{c_1,\dots,c_r\}\) is a regular sequence on \(M\).
As a consequence of theorem 1 we get a solution of the Landweber-Stong depth conjecture for a ring of invariants over the field \(\mathbb{F}_p\).
Proposition 2. Let \(G\) be a subgroup of \(\text{GL}_n(\mathbb{F}_p)\). The depth of the ring of invariants \((\mathbb{F}_p[u_1,\dots\), \(u_n])^G\) is the largest \(r\) such that \(\{c_1,\dots,c_r\}\) is a regular sequence on \((\mathbb{F}_p[u_1,\dots,u_n])^G\).

MSC:

55S10 Steenrod algebra
Full Text: DOI

References:

[1] N. Bourbaki: Algèbre homologique, chapitre 10, 1980 · Zbl 0455.18010
[2] Broto, C.; Zarati, S., Nil-localization of unstable algebras over the Steenrod algebra, Math. Z., 199, 525-537 (1988) · Zbl 0639.55012 · doi:10.1007/BF01161641
[3] Dickson, L. E., A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc., 12, 627-637 (1911)
[4] Henn, H. W.; Lannes, J.; Schwartz, L., The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects, A. J. Math., 115, 5, 1053-1106 (1993) · Zbl 0805.55011 · doi:10.2307/2375065
[5] Landweber, P. S.; Stong, R. E., The depth of rings of invariants over finite fields, Springer L.N.Math., 1240, 259-274 (1987) · Zbl 0623.55007
[6] P.S. Landweber, R.E. Stong: Dickson invariants and Steenrod operations on cohomology rings, preprint series of the University of Minneapolis; IMA Preprint 116, 1984
[7] Lannes, J., Sur la cohomologie modulo p des p-groupes abéliens élémentaires, Math. Soc. L.N.S., 117, 97-116 (1987) · Zbl 0654.55013
[8] Lannes, J., Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélien élémentaire, Publ. I.H.E.S., 75, 135-224 (1992) · Zbl 0857.55011
[9] Lannes, J.; Zarati, S., Théorie de Smith algébrique et classification des \(H*V-####\)-injectifs, Bull. Soc. Math. France, 123, 189-223 (1995) · Zbl 0862.55002
[10] Lannes, J.; Zarati, S., Tor et Ext-dimensions des H* V-A-modules instables qui sont de type fini comme H* V-modules, Progress in Mathematics, 136, 241-253 (1996) · Zbl 0862.55003
[11] Lannes, J.; Zarati, S., Foncteurs dérivés de la déstabilisation, Math. Z., 194, 25-59 (1987) · Zbl 0627.55014 · doi:10.1007/BF01168004
[12] Lannes, J.; Zarati, S., Sur les \(####\)-injectifs, Ann. Scient. Ec. Norm. Sup., 19, 1-31 (1986)
[13] H. Matsumura: Commutative ring theory, Cambridge University Press, 1992
[14] Mui, H., Modular invariant theory and the cohomology algebra of symmetric groups, J. Fac. Sc. Univ. Tokyo, 22, 319-369 (1975) · Zbl 0335.18010
[15] Rector, D., Noetherian cohomology rings and finite loop spaces with torsion, J.P.A.A., 32, 191-217 (1984) · Zbl 0543.57030
[16] D.J. Rusin: The depths of rings of invariants and cohomology rings, preprint, 1985
[17] L. Schwartz: Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, University of Chicago Press, 1994 · Zbl 0871.55001
[18] J.-P. Serre: Groupes finis d’automorphismes d’anneaux locaux réguliers, Colloque d’algèbre, Paris Ecole Norm. Sup. de jeunes filles, 1967
[19] J.-P. Serre: Algèbre locale. Multiplicités, Springer L.N.Math., No. 11, 1965 · Zbl 0091.03701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.