×

Graded contractions of the Pauli graded \(\text{sl}(3,\mathbb C)\). (English) Zbl 1161.17305

Summary: The Lie algebra \(\text{sl}(3,\mathbb C)\) is considered in the basis of generalized Pauli matrices. Corresponding grading is the Pauli grading here. It is one of the four gradings of the algebra which cannot be further refined.
The set \(\mathcal S\) of 48 contraction equations for 24 contraction parameters is solved. Our main tools are the symmetry group of the Pauli grading of \(\text{sl}(3,\mathbb C)\), which is essentially the finite group \(\text{SL}(2,\mathbb Z_3)\), and the induced symmetry of the system \(\mathcal S\). A list of all equivalence classes of solutions of the contraction equations is provided. Among the solutions, 175 equivalence classes are non-parametric and 13 solutions depend on one or two continuous parameters, providing a continuum of equivalence classes and subsequently continuum of non-isomorphic Lie algebras. Solutions of the contraction equations of Pauli graded \(\text{sl}(3,\mathbb C)\) are identified here as specific solvable Lie algebras of dimensions up to 8. Earlier algorithms for identification of Lie algebras, given by their structure constants, had to be made more efficient in order to distinguish non-isomorphic Lie algebras encountered here.
The resulting Lie algebras are summarized in tabular form. There are 88 indecomposable solvable Lie algebras of dimension 8, 77 of them being nilpotent. There are 11 infinite sets of parametric Lie algebra which still deserve further study.

MSC:

17B20 Simple, semisimple, reductive (super)algebras
22E70 Applications of Lie groups to the sciences; explicit representations
81R05 Finite-dimensional groups and algebras motivated by physics and their representations

References:

[1] Borel, A.; deSiebenthal, J., Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv., 23, 200-221 (1949) · Zbl 0034.30701
[2] Dynkin, E. B., Semi-simple subalgebras of semi-simple Lie algebras, Maximal subgroups of the classical groups, Transl. Amer. Math. Soc., 6, 2, 111-244 (1957), 245-378 · Zbl 0077.03404
[3] J.F. Adams, Maps between classifying spaces, Inventiones Math. 36 (1976) 1-41; Maps between classifying spaces II, Inventiones Math. 38 (1978) 1-65.; J.F. Adams, Maps between classifying spaces, Inventiones Math. 36 (1976) 1-41; Maps between classifying spaces II, Inventiones Math. 38 (1978) 1-65. · Zbl 0399.55011
[4] Patera, J.; Sharp, R. T.; Slansky, R., On a new relation between semisimple Lie algebras, J. Math. Phys., 21, 2335-2341 (1980) · Zbl 0448.17010
[5] Moody, R. V.; Pianzola, A., \(λ\)-mappings between representation rings of Lie algebras, Can. J. Math., 35, 893-960 (1983) · Zbl 0503.17005
[6] Segal, I. E., A class of operator algebras which are determined by groups, Duke Math. J., 18, 221-265 (1951) · Zbl 0045.38601
[7] Inönü, E.; Wigner, E. P., Proc. Nat. Acad. Sci. (US), 39, 510 (1953) · Zbl 0050.02601
[8] M. Gerstenhaber, Deformations of algebras, Ann. Math. 79 (1964) 59; Ann. Math. 84 (1966) 1; Ann. Math. 88 (1968) 1.; M. Gerstenhaber, Deformations of algebras, Ann. Math. 79 (1964) 59; Ann. Math. 84 (1966) 1; Ann. Math. 88 (1968) 1. · Zbl 0123.03101
[9] de Montigny, M.; Patera, J., Discrete and continuous graded contractions of Lie algebras and superalgebras, J. Phys. A: Math. Gen., 24, 525-547 (1991) · Zbl 0731.17001
[10] Patera, J.; Zassenhaus, H., The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of type \(A_{n−1}\), J. Math. Phys., 29, 665-673 (1988) · Zbl 0647.17004
[11] Dickson, L. E., Linear Groups with an Exposition of the Galois Field Theory (1958), Dover: Dover New York · Zbl 0082.24901
[12] Schulte, J., Harmonic analysis on finite Heisenberg group, Eur. J. Combin., 25, 327-338 (2004) · Zbl 1045.43011
[13] Weyl, H., Theory of Groups and Quantum Mechanics (1950), Dover: Dover New York, pp. 272-280
[14] Galetti, D.; Ruzzi, M., Dynamics in discrete phase spaces and time interval operators, Physica A, 264, 473-491 (1999)
[15] Leonhardt, U., Discrete Wigner function and quantum-state tomography, Phys. Rev. A, 53, 2998-3013 (1996)
[16] M. Rausch de Traubenberg, Algèbres de Clifford, supersymétrie et symétries \(\mathbb{Z}_n\)<hep-th/9802141>; M. Rausch de Traubenberg, Algèbres de Clifford, supersymétrie et symétries \(\mathbb{Z}_n\)<hep-th/9802141>
[17] Šťovíček, P.; Tolar, J., Quantum mechanics in a discrete space-time, Rep. Math. Phys., 20, 157-170 (1984) · Zbl 0586.22009
[18] Vourdas, A., Quantum systems with finite Hilbert space, Rep. Progr. Phys., 67, 267-320 (2004)
[19] Patera, J.; Zassenhaus, H., On Lie gradings I, Linear Algebra Appl., 112, 87-159 (1989) · Zbl 0675.17001
[20] Havlíček, M.; Patera, J.; Pelantová, E., On the fine gradings of simple classical Lie algebras, Int. J. Mod. Phys., 12, 189-194 (1997) · Zbl 1001.17032
[21] Havlíček, M.; Patera, J.; Pelantová, E., On the maximal Abelian subgroups of the diagonalizable automorphisms of simple classical Lie algebras, (Doebner, H. D.; Nattermann, P.; Scherer, W., Proceedings of XXI International Colloquium on Group Theoretical Methods in Physics, Goslar, Germany, 1996. Proceedings of XXI International Colloquium on Group Theoretical Methods in Physics, Goslar, Germany, 1996, Group Theoretical Methods in Physics (1997), World Scientific: World Scientific Singapore), 116-120
[22] Havlíček, M.; Patera, J.; Pelantová, E., On Lie gradings II, Linear Algebra Appl., 277, 97-125 (1998) · Zbl 0939.17020
[23] M. Havlíček, J. Patera, E. Pelantová, J. Tolar, The fine gradings of \(\mathit{sl} ( 3 , \mathbb{C} )\)<math-ph/0411037>; M. Havlíček, J. Patera, E. Pelantová, J. Tolar, The fine gradings of \(\mathit{sl} ( 3 , \mathbb{C} )\)<math-ph/0411037>
[24] E. Pelantová, Gradings of Lie algebras, Habilitation thesis, Czech Technical University, Prague, 1997 (in Czech).; E. Pelantová, Gradings of Lie algebras, Habilitation thesis, Czech Technical University, Prague, 1997 (in Czech).
[25] Abdelmalek, M. A.; Leng, X.; Patera, J.; Winternitz, P., Grading refinements in the contraction of Lie algebras and their invariants, J. Phys. A: Math. Gen., 29, 7519-7543 (1996) · Zbl 0905.17036
[26] Weimar-Woods, E., Contraction of Lie algebras: generalized Inönü-Wigner contractions versus graded contractions, J. Math. Phys., 36, 4519-4548 (1995) · Zbl 0854.17036
[27] Havlíček, M.; Patera, J.; Pelantová, E.; Tolar, J., Automorphisms of the fine grading of \(sl(n, C)\) associated with the generalized Pauli matrices, J. Math. Phys., 43, 1083-1094 (2002), Available from: · Zbl 1059.17018
[28] Havlíček, M.; Patera, J.; Pelantová, E.; Tolar, J., Distinguished bases of \(sl(n, C)\) and their symmetries, (Kapuscik, E.; Horzela, A., Quantum Theory and Symmetries, Proceedings of the Second International Symposium (2002), World Scientific: World Scientific Singapore), 366-370 · Zbl 1067.17501
[29] Herranz, F.; Santander, M., The general solution of the real \(Z_2^{\otimes N}\) graded contractions of \(so (N+1)\), J. Phys. A: Math. Gen., 29, 6643-6652 (1996) · Zbl 0905.17037
[30] Moody, R. V.; Patera, J., Discrete and continuous graded contractions of representations of Lie algebras, J. Phys. A: Math. Gen., 24, 2227-2258 (1991) · Zbl 0751.17025
[31] Rand, D.; Winternitz, P.; Zassenhaus, H., On the identification of Lie algebra given by its structure constants I. Direct decompositions, Levi decompositions, and nilradicals, Linear Algebra Appl., 109, 197-246 (1988) · Zbl 0668.17004
[32] Beck, R. E.; Kolman, B.; Stewart, I. N., Computing the structure of a Lie algebra, (Beck, R. E.; Kolman, B., Computers in Nonassociative Rings and Algebras (1977), Academic Press: Academic Press New York), 167-188 · Zbl 0354.00012
[33] Abellanas, L.; Martinez Alonso, L., A general setting for Casimir invariants, J. Math. Phys., 16, 1580-1584 (1975) · Zbl 0308.17005
[34] Patera, J.; Sharp, R. T.; Winternitz, P.; Zassenhaus, H., Invariants of real low dimensional Lie algebras, J. Math. Phys., 17, 986-994 (1976) · Zbl 0357.17004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.