×

On the string Lie algebra. (English) Zbl 1372.17017

The article shows the relevance to find abelian representatives for a given equivalence class of crossed modules, that is crossed modules of the form \(\mu : V_2 \to V_3 \times_{\alpha} \mathfrak{g}\) which arise as connection between a short exact sequence of \(\mathfrak{g}\)-modules \(0 \to V_1 \to V_2 \mathop{\to}\limits^d V_3 \to 0\) and an abelian extension \(V_3 \times_{\alpha} \mathfrak{g}\) of \(\mathfrak{g}\) by \(V_3\) via a 2-cocycle \(\alpha\). Through the paper, authors almost always consider crossed modules where \(V_1 = \mathbb{C}\), the trivial \(\mathfrak{g}\)-module.
The explicit expression for the 2-cocycle \(\alpha\) in [F. Wagemann, Commun. Algebra 34, No. 5, 1699–1722 (2006; Zbl 1118.17004)] in order to construct an abelian representative for the Cartan cocycle corresponding to a general simple complex Lie algebra is not correct, so in the present paper the new expression for the 2-cocycle \(\alpha\) is proposed: \[ \widetilde{\alpha}(x,g_1,g_2):= \sum_{(x)} \int_0^1 dt f(pr(x^{(1)}), A_t (x^{(2)}, g_1), A_t(x^{(3)},g_2)) \] for all \(x \in U\mathfrak{g}\), \(g_1, g_2 \in \mathfrak{g}\), and \(f : \bigwedge^3 \mathfrak{g} \to \mathbb{C}\) is a Chevalley-Eilenberg 3-cochain of \(\mathfrak{g}\) with values in \(\mathbb{C}\). It works for any 3-cocycle with trivial coefficients.
The formula relies on an explicit formula for the homotopy contracting the Koszul complex. In order to render its expression explicit, one has to compute the Eulerian idempotent on the corresponding universal enveloping algebra, which is illustrated in the paper.
As an application of the proposed theory, authors show how to construct quasi-invariants tensors for a wide class of Lie algebras, including all simple complex Lie algebras.

MSC:

17B56 Cohomology of Lie (super)algebras
17B35 Universal enveloping (super)algebras
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)

Citations:

Zbl 1118.17004

References:

[1] Baez, J.C., Stevenson, D., Crans, A.S., Schreiber, U.: From loop groups to 2-groups. Homology, Homotopy Appl. 9(2), 101-135 (2007) · Zbl 1122.22003 · doi:10.4310/HHA.2007.v9.n2.a4
[2] Borel, A.: Groupes d’homotopie des groupes de Lie I, Séminaire H. Cartan, ENS 1949/50 · Zbl 0075.24105
[3] Cirio, L., Martins, J. F.: Infinitesimal 2-braidings and differential crossed modules. Advances of Mathematics. arXiv:1309.4070 · Zbl 1344.18005
[4] Gerstenhaber, M.: A uniform cohomology theory for algebras. Proc. Nat. Acad. Sci. 51, 626-629 (1964) · Zbl 0166.04205 · doi:10.1073/pnas.51.4.626
[5] Gerstenhaber, M.: On the deformation of rings and algebras: II. Ann. Math. 84, 1-19 (1966) · Zbl 0147.28903 · doi:10.2307/1970528
[6] Helmstetter, J.: Série de Hausdorff d’une algèbre de Lie et projections canoniques dans l’algèbre enveloppante. J. Algebra 120(1), 170-199 (1989) · Zbl 0685.17007 · doi:10.1016/0021-8693(89)90194-4
[7] Kassel, C.: Quantum groups, vol. 155. Springer-Verlag, New York (1995) · Zbl 0808.17003 · doi:10.1007/978-1-4612-0783-2
[8] Loday, J.-L.: Série de Hausdorff, idempotents eulériens et algèbres de Hopf. Exposition Math. 12(2), 165-178 (1994) · Zbl 0807.17003
[9] Mac Lane, S.: Historical note. J. Algebra 60, 319-320 (1979)
[10] Neeb, K.-H.: Non-abelian extensions of topological Lie algebras. Comm. Algebra 34(3), 991-1041 (2006) · Zbl 1158.17308 · doi:10.1080/00927870500441973
[11] Wagemann, F.: On crossed modules of Lie algebras. Comm. Algebra 34(5), 1699-1722 (2006) · Zbl 1118.17004 · doi:10.1080/00927870500542705
[12] Wigner, D.: An identity in the free Lie algebra. Proc. Amer. Math. Soc 106(3), 639-640 (1989) · Zbl 0682.17007 · doi:10.1090/S0002-9939-1989-0969322-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.