×

Gromov hyperbolicity of strongly pseudoconvex almost complex manifolds. (English) Zbl 1327.32040

Consider an almost-complex manifold \((M,J)\), and a relatively compact domain \(D\subset M\) with smooth strictly \(J\)-pseudoconvex boundary. This means that \(D=\{\rho<0\}\) for some smooth defining function \(\rho\) (whose gradient never vanishes on \(\partial D\)), which is strictly \(J\)-plurisubharmonic in a neighborhood of \(\overline{D}\). As in the integrable case, one can use \(J\)-holomorphic discs to define a Kobayashi distance \(d\) on \(D\). The main theorem of the paper is that \((D,d)\) is a Gromov-hyperbolic metric space. Furthermore, they show that \(\partial D\) is connected.

MSC:

32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
32Q60 Almost complex manifolds
32T15 Strongly pseudoconvex domains
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

References:

[1] Balogh, Zolt{\'a}n M.; Bonk, Mario, Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv., 75, 3, 504-533 (2000) · Zbl 0986.32012 · doi:10.1007/s000140050138
[2] Balogh, Zolt{\'a}n M.; Buckley, Stephen M., Geometric characterizations of Gromov hyperbolicity, Invent. Math., 153, 2, 261-301 (2003) · Zbl 1059.30038 · doi:10.1007/s00222-003-0287-6
[3] Bella{\`“{\i }}che, Andr{\'”e}, The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry, Progr. Math. 144, 1-78 (1996), Birkh\"auser, Basel · Zbl 0862.53031 · doi:10.1007/978-3-0348-9210-0\_1
[4] Benoist, Yves, Convexes hyperboliques et fonctions quasisym\'etriques, Publ. Math. Inst. Hautes \'Etudes Sci., 97, 181-237 (2003) · Zbl 1049.53027 · doi:10.1007/s10240-003-0012-4
[5] Blanc-Centi, L{\'e}a, On the Gromov hyperbolicity of the Kobayashi metric on strictly pseudoconvex regions in the almost complex case, Math. Z., 263, 3, 481-498 (2009) · Zbl 1195.32016 · doi:10.1007/s00209-008-0428-0
[6] Bonk, Mario; Heinonen, Juha; Koskela, Pekka, Uniformizing Gromov hyperbolic spaces, Ast\'erisque, 270, viii+99 pp. (2001) · Zbl 0970.30010
[7] Bonk, M.; Schramm, O., Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal., 10, 2, 266-306 (2000) · Zbl 0972.53021 · doi:10.1007/s000390050009
[8] Chow, Wei-Liang, \"Uber Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117, 98-105 (1939) · Zbl 0022.02304
[9] Coornaert, M.; Delzant, T.; Papadopoulos, A., G\'eom\'etrie et th\'eorie des groupes, Lecture Notes in Mathematics 1441, x+165 pp. (1990), Springer-Verlag, Berlin · Zbl 0727.20018
[10] Coupet, Bernard; Sukhov, Alexandre; Tumanov, Alexander, Proper \(J\)-holomorphic discs in Stein domains of dimension 2, Amer. J. Math., 131, 3, 653-674 (2009) · Zbl 1168.32020 · doi:10.1353/ajm.0.0056
[11] Diederich, Klas; Sukhov, Alexandre, Plurisubharmonic exhaustion functions and almost complex Stein structures, Michigan Math. J., 56, 2, 331-355 (2008) · Zbl 1161.32012 · doi:10.1307/mmj/1224783517
[12] Forstneri{\v{c}}, Franc; Rosay, Jean-Pierre, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann., 279, 2, 239-252 (1987) · Zbl 0644.32013 · doi:10.1007/BF01461721
[13] Gaussier, Herv{\'e}; Sukhov, Alexandre, Estimates of the Kobayashi-Royden metric in almost complex manifolds, Bull. Soc. Math. France, 133, 2, 259-273 (2005) · Zbl 1083.32011
[14] Sur les groupes hyperboliques d’apr\`“es Mikhael Gromov, Progress in Mathematics 83, xii+285 pp. (1990), Birkh\'”auser Boston, Inc., Boston, MA · Zbl 0731.20025 · doi:10.1007/978-1-4684-9167-8
[15] Graham, Ian, Boundary behavior of the Carath\'eodory and Kobayashi metrics on strongly pseudoconvex domains in \(C^n\) with smooth boundary, Trans. Amer. Math. Soc., 207, 219-240 (1975) · Zbl 0305.32011
[16] Gromov, M., Hyperbolic groups. Essays in group theory, Math. Sci. Res. Inst. Publ. 8, 75-263 (1987), Springer, New York · Zbl 0634.20015 · doi:10.1007/978-1-4613-9586-7\_3
[17] Gromov, Mikhael, Carnot-Carath\'eodory spaces seen from within. Sub-Riemannian geometry, Progr. Math. 144, 79-323 (1996), Birkh\"auser, Basel · Zbl 0864.53025
[18] Gromov, Misha, Metric structures for Riemannian and non-Riemannian spaces, Modern Birkh\`“auser Classics, xx+585 pp. (2007), Birkh\'”auser Boston, Inc., Boston, MA · Zbl 1113.53001
[19] Kobayashi, Shoshichi, Negative vector bundles and complex Finsler structures, Nagoya Math. J., 57, 153-166 (1975) · Zbl 0326.32016
[20] Kobayashi, Shoshichi, Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 318, xiv+471 pp. (1998), Springer-Verlag, Berlin · Zbl 0917.32019 · doi:10.1007/978-3-662-03582-5
[21] Kobayashi, Shoshichi, Projectively invariant distances for affine and projective structures. Differential geometry, Warsaw, 1979, Banach Center Publ. 12, 127-152 (1984), PWN, Warsaw · Zbl 0558.53019
[22] Lempert, L{\'a}szl{\'o}, La m\'etrique de Kobayashi et la repr\'esentation des domaines sur la boule, Bull. Soc. Math. France, 109, 4, 427-474 (1981) · Zbl 0492.32025
[23] Ma, Daowei, Sharp estimates of the Kobayashi metric near strongly pseudoconvex points. The Madison Symposium on Complex Analysis, Madison, WI, 1991, Contemp. Math. 137, 329-338 (1992), Amer. Math. Soc., Providence, RI · Zbl 0770.32013 · doi:10.1090/conm/137/1190993
[24] McDuff, Dusa, Symplectic manifolds with contact type boundaries, Invent. Math., 103, 3, 651-671 (1991) · Zbl 0719.53015 · doi:10.1007/BF01239530
[25] Milnor, J., Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, vi+153 pp. (1963), Princeton University Press, Princeton, N.J. · Zbl 0108.10401
[26] Nagel, Alexander; Stein, Elias M.; Wainger, Stephen, Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155, 1-2, 103-147 (1985) · Zbl 0578.32044 · doi:10.1007/BF02392539
[27] Nijenhuis, Albert; Woolf, William B., Some integration problems in almost-complex and complex manifolds., Ann. of Math. (2), 77, 424-489 (1963) · Zbl 0115.16103
[28] Spivak, Michael, A comprehensive introduction to differential geometry. Vol. I, xiv+668 pp. (1979), Publish or Perish, Inc., Wilmington, Del. · Zbl 0439.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.