×

On the sensitivity to noise of a Boolean function. (English) Zbl 1283.94163

Summary: In this paper we generate upper and lower bounds for the sensitivity to noise of a Boolean function using relaxed assumptions on input choices and noise. The robustness of a Boolean network to noisy inputs is related to the average sensitivity of that function. The average sensitivity measures how sensitive to changes in the inputs the output of the function is. The average sensitivity of Boolean functions can indicate whether a specific random Boolean network constructed from those functions is ordered, chaotic, or in critical phase. We give an exact formula relating the sensitivity to noise and the average sensitivity of a Boolean function. The analytic approach is supplemented by numerical results that illustrate the overall behavior of the sensitivities as various Boolean functions are considered. It is observed that, for certain parameter combinations, the upper estimates in this paper are sharper than other estimates in the literature and that the lower estimates are very close to the actual values of the sensitivity to noise of the selected Boolean functions. {
©2009 American Institute of Physics}

MSC:

94C10 Switching theory, application of Boolean algebra; Boolean functions (MSC2010)
06E30 Boolean functions
Full Text: DOI

References:

[1] S. A. Kauffman, The Origins of Order (Oxford University Press, New York, 1993), pp. 173–235.
[2] DOI: 10.1103/PhysRevLett.93.048701 · doi:10.1103/PhysRevLett.93.048701
[3] DOI: 10.1109/JPROC.2002.804686 · doi:10.1109/JPROC.2002.804686
[4] DOI: 10.1103/PhysRevE.72.046124 · doi:10.1103/PhysRevE.72.046124
[5] DOI: 10.1103/PhysRevE.72.055101 · doi:10.1103/PhysRevE.72.055101
[6] DOI: 10.1006/jtbi.2002.3081 · doi:10.1006/jtbi.2002.3081
[7] DOI: 10.1073/pnas.1536783100 · doi:10.1073/pnas.1536783100
[8] DOI: 10.1023/A:1015777824097 · Zbl 1024.82019 · doi:10.1023/A:1015777824097
[9] Wolfram S., A New Kind of Science (2002) · Zbl 1022.68084
[10] DOI: 10.1016/j.physa.2006.12.043 · doi:10.1016/j.physa.2006.12.043
[11] DOI: 10.1103/PhysRevE.65.016129 · doi:10.1103/PhysRevE.65.016129
[12] DOI: 10.1016/j.physa.2008.04.032 · doi:10.1016/j.physa.2008.04.032
[13] DOI: 10.1007/PL00009809 · Zbl 0909.06008 · doi:10.1007/PL00009809
[14] Schober S., Proceedings of the Fifth International Workshop on Computational Systems Biology (WCSB) pp 173– (2008)
[15] DOI: 10.1007/BF02698830 · Zbl 0986.60002 · doi:10.1007/BF02698830
[16] DOI: 10.1007/978-1-4613-8498-4 · doi:10.1007/978-1-4613-8498-4
[17] DOI: 10.1214/aop/1176988612 · Zbl 0819.28002 · doi:10.1214/aop/1176988612
[18] M. Ben-Or and N. Linial, in Randomness and Computation, edited by S. Micali (Academic, New York, 1989), pp. 91–115.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.