×

Parallel adaptive simplical re-meshing for deforming domain CFD computations. (English) Zbl 1349.76005

Summary: Deforming domains occur in many fields of computational fluid dynamics (CFD), such as interface tracking, simulation of pumps and engines, and fluid/structure interaction. The deformation of the domain presents a challenge to the integrity of the computational mesh; substantial motion of the domain boundaries requires vertex motion and changes in mesh connectivity. For cases of simple boundary motion or structured meshes, predetermined changes to the mesh structure can be sufficient. However, without a priori knowledge of how the domain will change, a more robust solution is required. The present work offers a parallelized solution for simplical meshes that is well-suited to extremely complex geometry. The mesh continuously evolves without user intervention or the use of target meshes. Varying length scales imposed by evolving boundary curvatures and narrow gaps are resolved with a fast length-scale algorithm. The set of algorithms are incorporated into an object-oriented code structure that permits broad application to a range of CFD problems. The robustness and versatility of the algorithm is demonstrated in several examples, representing motion of internal and external boundaries, where the boundary motion may or may not be known a priori.

MSC:

76-04 Software, source code, etc. for problems pertaining to fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Benek, J.; Steger, J.; Dougherty, F., A flexible grid embedding technique with application to the Euler equations (1983), AIAA 83-1944
[2] Tang, H.; Jones, C. C.; Sotiropoulos, F., An overset-grid method for 3D unsteady incompressible flows, J. Comput. Phys., 191, 567-600 (2003) · Zbl 1134.76435
[3] Péron, S.; Benoit, C., Automatic off-body overset adaptive Cartesian mesh method based on an octree approach, J. Comput. Phys., 232, 153-173 (2013)
[4] Dai, M.; Schmidt, D. P., Adaptive tetrahedral meshing in free-surface flow, J. Comput. Phys., 208, 1, 228-252 (2005) · Zbl 1114.76333
[5] Wicke, M.; Ritchie, D.; Klingner, B. M.; Burke, S.; Shewchuk, J. R.; O’Brien, J. F., Dynamic local remeshing for elastoplastic simulation, ACM Trans. Graph., 29, 49:1-49:11 (2010)
[6] Klingner, B. M.; Shewchuk, J. R., Aggressive tetrahedral mesh improvement, (Brewer, M. L.; Marcum, D., Proceedings of the 16th International Meshing Roundtable (2008), Springer: Springer Berlin, Heidelberg), 3-23 · Zbl 1238.65011
[7] Huang, W.; Russell, R., Adaptive Moving Mesh Methods (2010), Springer
[8] Burstedde, C.; Ghattas, O.; Stadler, G.; Tu, T.; Wilcox, L. C., Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow problems, Comput. Methods Appl. Mech. Eng., 198, 21-26, 1691-1700 (2009) · Zbl 1227.76027
[9] Gorman, G., Parallel anisotropic unstructured mesh optimisation and its applications (2006), University of London, Ph.D. thesis
[10] Baker, T., Mesh deformation and modification for time dependent problems, Int. J. Numer. Methods Fluids, 43, 747-768 (2003) · Zbl 1032.76665
[11] Compére, G.; Marchandise, E.; Remacle, J.-F., Transient adaptivity applied to two-phase incompressible flows, J. Comput. Phys., 227, 1923-1942 (2008) · Zbl 1135.76031
[12] Baker, T., Mesh movement and metamorphosis, Eng. Comput., 18, 188-198 (2002)
[13] Clausen, P.; Wicke, M.; Shewchuk, J. R.; O’Brien, J. F., Simulating liquids and solid-liquid interactions with Lagrangian meshes, ACM Trans. Graph., 32, 2, 17:1-17:15 (2013) · Zbl 1322.68212
[14] Dieter-Kissling, K.; Karbashi, M.; Marschall, H.; Javadi, A.; Miller, R.; Bothe, D., On the applicability of drop profile analysis tensiometry at high flow rates using an interface tracking method, Colloids Surf. A, 441, 837-845 (2014)
[15] Stadler, G.; Gurnis, M.; Burstedde, C.; Wilcox, L. C.; Alisic, L.; Ghattas, O., The dynamics of plate tectonics and mantle flow: from local to global scales, Science, 329, 1033-1038 (2010)
[16] Quan, S.; Lou, J.; Schmidt, D. P., Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations, J. Comput. Phys., 228, 7, 2660-2675 (2009) · Zbl 1275.76174
[17] Mooney, K.; Menon, S.; Schmidt, D. P., A computational study of viscoelastic droplet collisions, (ILASS-Americas 22nd Annual Conference on Liquid Atomization and Spray Systems (2010), ILASS-Americas)
[18] Mooney, K.; Schmidt, D. P., Finite volume simulations of the collision of viscoelastic droplets using adaptive re-meshing and explicit interface tracking, (ICLASS 2012 Triennial International Conference on Liquid Atomization and Spray Systems, International Conference on Liquid Atomization and Spray Systems (2012))
[19] Dieter-Kissling, K.; Marschall, H.; Javadi, A.; Miller, R.; Bothe, D., Numerical method for coupled interfacial surfactant transport on dynamic surface meshes of general topology, Comput. Fluids, 109, 168-184 (2015) · Zbl 1390.76052
[20] Batta, A.; Class, A.; Litfin, K.; Wetzel, T.; Moreau, V.; Massidda, L.; Thomas, S.; Lakehal, D.; Angeli, D.; Losi, G.; Mooney, K.; Tichelen, K. V., Experimental and numerical investigation of liquid-metal free-surface flows in spallation targets, Nucl. Eng. Des. (2014)
[21] Qian, J.; Law, C. K., Regimes of coalescence and separation in droplet collision, J. Fluid Mech., 331, 59-80 (1997)
[22] Cavallo, P.; Sinha, N.; Feldman, G., Parallel unstructured mesh adaptation for transient moving body and aeropropulsive applications, (Reno, Nevada, January. Reno, Nevada, January, Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, vol. 58 (2004), AIAA)
[23] Erzincanli, B.; Sahin, M., An arbitrary Lagrangian-Eulerian formulation for solving moving boundary problems with large displacements and rotations, J. Comput. Phys., 255, 660-679 (2013) · Zbl 1349.65369
[24] Bos, F. M., Numerical simulation of flapping wing foil and wing aerodynamics (2010), TU Delft, Ph.D. thesis
[25] Brusiani, F.; Bianchi, G. M.; Lucchini, T.; D’Errico, G., Implementation of a finite-element based mesh motion technique in an open source CFD code, ASME Conference Proceedings, 2009, 43406, 611-624 (2009)
[26] Lucchini, T.; Fiocco, M.; Torelli, R.; D’Errico, G., Automatic mech generation for full-cycle CFD modeling of IC engines: application to the TCC test case, (SAE Congress (2014))
[27] Brewer, M.; Diachin, L.; Knupp, P.; Leurent, T.; Melander, D., The mesquite mesh quality improvement toolkit, (12th International Meshing Roundtable, Sandia National Laboratories Report SAND 2003-3030P, Sept. 2003 (2003))
[28] Blom, F. J., Considerations on the spring analogy, Int. J. Numer. Methods Fluids, 32, 6, 647-668 (2000) · Zbl 0981.76067
[29] Huang, W.; Russell, R. D., Analysis of moving mesh partial differential equations with spatial smoothing, SIAM J. Numer. Anal., 34, 3, 1106-1126 (1997) · Zbl 0874.65071
[30] Gosselin, S.; Ollivier-Gooch, C., Tetrahedral mesh generation using Delaunay refinement with non-standard quality measures, Int. J. Numer. Methods Eng., 87, 8, 795-820 (2011) · Zbl 1242.65257
[31] Freitag, L. A.; Ollivier-Gooch, C., Tetrahedral mesh improvement using swapping and smoothing, Int. J. Numer. Methods Eng., 40, 3979-4002 (1997) · Zbl 0897.65075
[32] Brière de L’Isle, E.; George, P. L., Optimization of tetrahedral meshes, (Institute for Mathematics and Its Applications, vol. 75 (1995)), 97-127 · Zbl 0831.65127
[33] Klincsek, G., Minimal triangulations of Polygonal domains, Ann. Discrete Math., 9, 121-123 (1980) · Zbl 0452.05002
[34] Jasak, H., Error analysis and estimation for the finite volume method with applications to fluid flow (1996), Imperial College, University of London, Ph.D. thesis
[35] Muzaferija, S., Adaptive finite volume method for flow prediction using unstructured meshes and multigrid approach (1994), Imperial College, University of London, Ph.D. thesis
[36] Coelho, P.; Pereira, J. C.F.; Carvalho, M. G., Calculation of laminar recirculating flows using a local non-staggered grid refinement system, Int. J. Numer. Methods Fluids, 12, 6, 535-557 (1991) · Zbl 0721.76055
[37] Dai, M., Numerical simulation of free surface flows using a moving, unstructured mesh method (2005), University of Massachusetts: University of Massachusetts Amherst, Ph.D. thesis
[38] Menon, S., A numerical study of droplet formation and behavior using interface tracking methods (2011), University of Massachusetts, Ph.D. thesis
[39] Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A., A high-performance, portable implementation of the MPI message passing interface standard, Parallel Comput., 22, 6, 789-828 (1996) · Zbl 0875.68206
[40] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 359-392 (1998) · Zbl 0915.68129
[41] Devine, K.; Boman, E.; Riesen, L.; Catalyurek, U.; Chevalier, C., Getting started with Zoltan: a short tutorial, (Proc. of 2009 Dagstuhl Seminar on Combinatorial Scientific Computing (2009))
[42] Pellegrini, F.; Roman, J., Scotch: a software package for static mapping by dual recursive bipartitioning of process and architecture graphs, (Liddell, H.; Colbrook, A.; Hertzberger, B.; Sloot, P., High-Performance Computing and Networking. High-Performance Computing and Networking, Lecture Notes in Computer Science, vol. 1067 (1996), Springer: Springer Berlin/Heidelberg), 493-498
[44] Freitag, L. A.; Jones, M.; Plassmann, P., A parallel algorithm for mesh smoothing, SIAM J. Sci. Comput., 20, 6, 2023-2040 (1999) · Zbl 0939.65132
[45] Tsai, H. M.; Cai, J.; Liu, F.; Wong, A. S.F.; Zhu, Y., Unsteady flow calculations with a parallel multiblock moving mesh algorithm, AIAA J., 39, 1021-1029 (2001)
[46] Jiao, X.; Alexander, P. J., Parallel feature-preserving mesh smoothing, (Gervasi, O.; Gavrilova, M.; Kumar, V.; Lagana, A.; Lee, H.; Mun, Y.; Taniar, D.; Tan, C., Computational Science and Its Applications ICCSA 2005. Computational Science and Its Applications ICCSA 2005, Lecture Notes in Computer Science, vol. 3483 (2005), Springer: Springer Berlin/Heidelberg), 421-431
[47] Guoy, D.; Wilmarth, T.; Alexander, P.; Jiao, X.; Campbell, M.; Shaffer, E.; Fiedler, R.; Cochran, W.; Suriyamongkol, P., Parallel mesh adaptation for highly evolving geometries with application to solid propellant rockets, (Brewer, M. L.; Marcum, D., Proceedings of the 16th International Meshing Roundtable (2008), Springer: Springer Berlin/Heidelberg), 515-534 · Zbl 1134.65319
[48] Hestenes, M. R.; Stiefel, E. L., Method of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 29, 409-436 (1952) · Zbl 0048.09901
[49] Menon, S.; Schmidt, D., Supermesh construction for conservative interpolation on unstructured meshes: an extension to cell-centered finite-volume variables, Comput. Methods Appl. Mech. Eng., 200, 2797-2804 (2011) · Zbl 1230.76034
[50] Weller, H. G.; Tabor, G.; Jasak, H.; Fureby, C., A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys., 12, 6, 620-631 (1998)
[51] Jasak, H.; Jemcov, A.; Tuković, Z., OpenFOAM: a C++ library for complex physics simulations, (Terze, Z.; Lacor, C., Coupled Methods in Numerical Dynamics (2007), Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb)
[52] Knupp, P. M., Algebraic mesh quality metrics for unstructured initial meshes, Finite Elem. Anal. Des., 39, 3, 217-241 (2003) · Zbl 1213.74292
[53] Stapf, K. G.; Menon, S.; Schmidt, D. P.; Rieß, M.; Sens, M., Charge motion and mixture formation analysis of a DISI engine based on an adaptive parallel mesh approach, (SAE Congress (2014))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.