×

Blobbed topological recursion of the quartic Kontsevich model. I: Loop equations and conjectures. (English) Zbl 1507.81160

Summary: We provide strong evidence for the conjecture that the analogue of Kontsevich’s matrix Airy function, with the cubic potential \(\text{Tr}(\Phi^3)\) replaced by a quartic term \(\text{Tr}(\Phi^4)\), obeys the blobbed topological recursion of Borot and Shadrin. We identify in the quartic Kontsevich model three families of correlation functions for which we establish interwoven loop equations. One family consists of symmetric meromorphic differential forms \(\omega_{g,n}\) labelled by genus and number of marked points of a complex curve. We reduce the solution of all loop equations to a straightforward but lengthy evaluation of residues. In all evaluated cases, the \(\omega_{g,n}\) consist of a part with poles at ramification points which satisfies the universal formula of topological recursion, and of a part holomorphic at ramification points for which we provide an explicit residue formula.

MSC:

81T32 Matrix models and tensor models for quantum field theory
14D15 Formal methods and deformations in algebraic geometry
58C20 Differentiation theory (Gateaux, Fréchet, etc.) on manifolds
14H10 Families, moduli of curves (algebraic)
62H20 Measures of association (correlation, canonical correlation, etc.)
53C65 Integral geometry
32H04 Meromorphic mappings in several complex variables

References:

[1] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1-23 (1992) · Zbl 0756.35081 · doi:10.1007/BF02099526
[2] Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry (Cambridge, MA, 1990), pp. 243-310. Lehigh Univ., Bethlehem, PA (1991). doi:10.4310/SDG.1990.v1.n1.a5 · Zbl 0757.53049
[3] Eynard, B.; Orantin, N., Invariants of algebraic curves and topological expansion, Commun. Numer. Theor. Phys., 1, 347-452 (2007) · Zbl 1161.14026 · doi:10.4310/CNTP.2007.v1.n2.a4
[4] Eynard, B.: Counting Surfaces. Prog. Math. Phys., vol. 70. Birkhäuser/Springer, Basel (2016). doi:10.1007/978-3-7643-8797-6 · Zbl 1338.81005
[5] Chekhov, L.; Eynard, B.; Orantin, N., Free energy topological expansion for the 2-matrix model, JHEP, 12, 053 (2006) · Zbl 1226.81250 · doi:10.1088/1126-6708/2006/12/053
[6] Mirzakhani, M., Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math., 167, 1, 179-222 (2006) · Zbl 1125.30039 · doi:10.1007/s00222-006-0013-2
[7] Bouchard, V., Mariño, M.: Hurwitz numbers, matrix models and enumerative geometry. In: From Hodge Theory to Integrability and TQFT: \({\rm tt}*\)-geometry. Proc. Symp. Pure Math., 78, pp. 263-283. Amer. Math. Soc., Providence, RI (2008). doi:10.1090/pspum/078/2483754 · Zbl 1151.14335
[8] Bouchard, V.; Klemm, A.; Mariño, M.; Pasquetti, S., Remodeling the B-model, Commun. Math. Phys., 287, 117-178 (2009) · Zbl 1178.81214 · doi:10.1007/s00220-008-0620-4
[9] Borot, G.; Shadrin, S., Blobbed topological recursion: properties and applications, Math. Proc. Camb. Philos. Soc., 162, 1, 39-87 (2017) · Zbl 1396.14031 · doi:10.1017/S0305004116000323
[10] Borot, G.; Eynard, B.; Orantin, N., Abstract loop equations, topological recursion and new applications, Commun. Numer. Theor. Phys., 09, 51-187 (2015) · Zbl 1329.14074 · doi:10.4310/CNTP.2015.v9.n1.a2
[11] Hock, A., Wulkenhaar, R.: Blobbed topological recursion of the quartic Kontsevich model II: Genus=0 (2021) arXiv:2103.13271 [math-ph]
[12] Grosse, H.; Wulkenhaar, R., Power-counting theorem for non-local matrix models and renormalisation, Commun. Math. Phys., 254, 1, 91-127 (2005) · Zbl 1079.81049 · doi:10.1007/s00220-004-1238-9
[13] Langmann, E.; Szabo, RJ; Zarembo, K., Exact solution of quantum field theory on noncommutative phase spaces, JHEP, 01, 017 (2004) · Zbl 1243.81205 · doi:10.1088/1126-6708/2004/01/017
[14] Grosse, H.; Wulkenhaar, R., Renormalisation of \(\phi^4\)-theory on noncommutative \({\mathbb{R}}^4\) in the matrix base, Commun. Math. Phys., 256, 305-374 (2005) · Zbl 1075.82005 · doi:10.1007/s00220-004-1285-2
[15] Disertori, M.; Gurau, R.; Magnen, J.; Rivasseau, V., Vanishing of beta function of non commutative \(\Phi^4_4\) theory to all orders, Phys. Lett. B, 649, 95-102 (2007) · Zbl 1248.81253 · doi:10.1016/j.physletb.2007.04.007
[16] Grosse, H.; Steinacker, H., Renormalization of the noncommutative \(\phi^3\)-model through the Kontsevich model, Nucl. Phys. B, 746, 202-226 (2006) · Zbl 1178.81190 · doi:10.1016/j.nuclphysb.2006.04.007
[17] Grosse, H.; Steinacker, H., Exact renormalization of a noncommutative \(\phi^3\) model in 6 dimensions, Adv. Theor. Math. Phys., 12, 3, 605-639 (2008) · Zbl 1177.81104 · doi:10.4310/ATMP.2008.v12.n3.a4
[18] Grosse, H., Hock, A., Wulkenhaar, R.: A Laplacian to compute intersection numbers on \(\overline{{\cal{M}}}_{g,n}\) and correlation functions in NCQFT (2019) arXiv:1903.12526 [math-ph]
[19] Grosse, H., Wulkenhaar, R.: Progress in solving a noncommutative quantum field theory in four dimensions (2009) arXiv:0909.1389 [hep-th] · Zbl 1305.81129
[20] Grosse, H.; Wulkenhaar, R., Self-dual noncommutative \(\phi^4\)-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory, Commun. Math. Phys., 329, 1069-1130 (2014) · Zbl 1305.81129 · doi:10.1007/s00220-014-1906-3
[21] Panzer, E.; Wulkenhaar, R., Lambert-W solves the noncommutative \(\Phi^4\)-model, Commun. Math. Phys., 374, 1935-1961 (2020) · Zbl 1436.81091 · doi:10.1007/s00220-019-03592-4
[22] Grosse, H., Hock, A., Wulkenhaar, R.: Solution of all quartic matrix models (2019) arXiv:1906.04600 [math-ph]
[23] Schürmann, J., Wulkenhaar, R.: An algebraic approach to a quartic analogue of the Kontsevich model (2019) arXiv:1912.03979 [math-ph]
[24] de Jong, J., Hock, A., Wulkenhaar, R.: Nested Catalan tables and a recurrence relation in noncommutative quantum field theory. To appear in Ann. Inst. H. Poincaré D (2022) arXiv:1904.11231 [math-ph] · Zbl 1495.81075
[25] Branahl, J.; Hock, A.; Wulkenhaar, R., Perturbative and geometric analysis of the quartic Kontsevich model, SIGMA, 17, 085 (2021) · Zbl 1480.81098 · doi:10.3842/SIGMA.2021.085
[26] Hock, A.: Matrix Field Theory. PhD thesis, WWU Münster (2020) · Zbl 1439.81003
[27] Eynard, B.; Orantin, N., Topological expansion of mixed correlations in the Hermitian 2-matrix model and \(x-y\) symmetry of the \(F_g\) algebraic invariants, J. Phys. A Math. Theor. (2007) · Zbl 1134.81040 · doi:10.1088/1751-8113/41/1/015203
[28] Eynard, B.; Orantin, N., Topological expansion and boundary conditions, JHEP, 06, 037 (2008) · Zbl 1134.81040 · doi:10.1088/1126-6708/2008/06/037
[29] Staudacher, M., Combinatorial solution of the two matrix model, Phys. Lett. B, 305, 332-338 (1993) · doi:10.1016/0370-2693(93)91063-S
[30] Borot, G.; Eynard, B.; Mulase, M.; Safnuk, B., A Matrix model for simple Hurwitz numbers, and topological recursion, J. Geom. Phys., 61, 522-540 (2011) · Zbl 1225.14043 · doi:10.1016/j.geomphys.2010.10.017
[31] Belliard, R., Charbonnier, S., Eynard, B., Garcia-Failde, E.: Topological recursion for generalised Kontsevich graphs and r-spin intersection numbers (2021) arXiv:2105.08035 [math.CO]
[32] Borot, G.; Eynard, B., Enumeration of maps with self avoiding loops and the O(n) model on random lattices of all topologies, J. Stat. Mech., 1101, 01010 (2011) · Zbl 1456.82430 · doi:10.1088/1742-5468/2011/01/P01010
[33] Borot, G., Formal multidimensional integrals, stuffed maps, and topological recursion, Ann. Inst. H. Poincaré D, 1, 225-264 (2014) · Zbl 1297.05013 · doi:10.4171/AIHPD/7
[34] Bonzom, V.; Dartois, S., Blobbed topological recursion for the quartic melonic tensor model, J. Phys. A Math. Theor. (2018) · Zbl 1400.81159 · doi:10.1088/1751-8121/aac8e7
[35] Schechter, S., On the inversion of certain matrices, Math. Tables Aids Comput., 13, 73-77 (1959) · Zbl 0093.24201 · doi:10.2307/2001955
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.