×

Gradient extension of classical material models: from nuclear & condensed matter scales to Earth & cosmological scales. (English) Zbl 1476.74002

Ghavanloo, Esmaeal (ed.) et al., Size-dependent continuum mechanics approaches. Theory and applications. Cham: Springer. Springer Tracts Mech. Eng., 417-452 (2021).
Summary: The various mathematical models developed in the past to interpret the behavior of natural and manmade materials were based on observations and experiments made at that time. Classical laws (such as Newton’s for gravity, Hooke’s for elasticity, Navier-Stokes for fluidity, Fick’s/Fourier’s for diffusion/heat transfer, Coulomb’s for electricity, as well as Maxwell’s for electromagnetism and Einstein’s for relativity) formed the basis for shaping our current technology and civilization. The discovery of new phenomena with the aid of recently developed experimental probes have led to various modifications of these laws across disciplines and scales: from subatomic and elementary particle physics to cosmology and from atomistic and nano/micro to macro/giga scales. The emergence of nanotechnology and the further advancement of space technology are ultimately connected with the design of novel tools for observation and measurements, as well as with the development of new methods and approaches for quantification and understanding. This chapter first reviews the author’s previously developed weakly nonlocal or gradient models for elasticity, diffusion and plasticity within a unifying internal length gradient (ILG) framework. It then proposes a similar extension for fluids and Maxwell’s equations of electromagnetism. Finally, it ventures a gradient modification of Newton’s law of gravity and examines its implications to some problems of elementary particle physics, also relevant to cosmology. Along similar lines, it suggests an analogous extension of London’s quantum mechanical potential to include both an “attractive” and a “repulsive” branch. It concludes with some comments on a fractional generalization of the ILG framework.
For the entire collection see [Zbl 1472.74003].

MSC:

74A20 Theory of constitutive functions in solid mechanics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
78A02 Foundations in optics and electromagnetic theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)

References:

[1] Aifantis, EC, Internal length gradient (ILG) material mechanics across scales and disciplines, Adv Appl Mech, 49, 1-110 (2016) · doi:10.1016/bs.aams.2016.08.001
[2] Aifantis, EC, On the microstructural origin of certain inelastic models, J Eng Mater Technol, 106, 326-330 (1984) · doi:10.1115/1.3225725
[3] Aifantis, EC, The physics of plastic deformation, Int J Plast, 3, 211-247 (1987) · Zbl 0616.73106 · doi:10.1016/0749-6419(87)90021-0
[4] Aifantis, EC, On the role of gradients in the localization of deformation and fracture, Int J Eng Sci, 30, 1279-1299 (1992) · Zbl 0769.73058 · doi:10.1016/0020-7225(92)90141-3
[5] Aifantis, EC, Pattern formation in plasticity, Int J Eng Sci, 33, 2161-2178 (1995) · Zbl 0899.73122 · doi:10.1016/0020-7225(95)00086-D
[6] Aifantis, EC, On scale invariance in anisotropic plasticity, gradient plasticity and gradient elasticity, Int J Eng Sci, 47, 1089-1099 (2009) · Zbl 1213.74061 · doi:10.1016/j.ijengsci.2009.07.003
[7] Aifantis, EC, On the gradient approach - relation to Eringen’s nonlocal theory, Int J Eng Sci, 49, 1367-1377 (2011) · doi:10.1016/j.ijengsci.2011.03.016
[8] Aifantis, EC, Gradient nanomechanics: applications to deformation, fracture, and diffusion in manopolycrystals, Metall Mater Trans A, 42, 2985-2998 (2011) · doi:10.1007/s11661-011-0725-9
[9] Askes, H.; Aifantis, EC, Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results, Int J Solids Struct, 48, 1962-1990 (2011) · doi:10.1016/j.ijsolstr.2011.03.006
[10] Aifantis, EC, Gradient material mechanics: perspectives and prospects, Acta Mech, 225, 999-1012 (2014) · doi:10.1007/s00707-013-1076-y
[11] Aifantis, EC; Serrin, JB, The mechanical theory of fluid interfaces and Maxwell’s rule, J Coll Inter Sci, 96, 517-529 (1983) · doi:10.1016/0021-9797(83)90053-X
[12] Aifantis, EC; Serrin, JB, Equilibrium solutions in the mechanical theory of fluid microstructures, J Coll Inter Sci, 96, 530-547 (1983) · doi:10.1016/0021-9797(83)90054-1
[13] Van der Waals, JD, Théorie thermodynamique de la capillarité, dans l’hypothèse d’une variation continue de densité, Arch Neerl Sci Exactes Nat, 28, 121-209 (1895) · JFM 25.1585.01
[14] Ter Haar D (Ed) (1965) Collected papers of L.D. Landau. Pergamon, London
[15] Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258-267 · Zbl 1431.35066
[16] Cahn, JW, Free energy of a nonuniform system, II. Thermodynamic basis. J Chem Phys, 30, 1121-1124 (1959)
[17] Kevrekidis, IG; Gear, CW; Hyman, JM; Kevrekidis, PJ; Runborg, O.; Theodoropoulos, C., Equation-free, coarse-grained multiscale computation: enabling macroscopic simulators to perform system-level analysis, Comm Math Sci, 1, 715-762 (2003) · Zbl 1086.65066 · doi:10.4310/CMS.2003.v1.n4.a5
[18] Kevrekidis, IG; Samaey, G., Equation-free multiscale computation: algorithms and applications, Annu Rev Phys Chem, 60, 321-344 (2009) · doi:10.1146/annurev.physchem.59.032607.093610
[19] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J Stat Phys, 52, 479-487 (1988) · Zbl 1082.82501 · doi:10.1007/BF01016429
[20] Tsallis C (2009) Entropy. In: Meyers RA (Ed) Encyclopedia of complexity and systems science. Springer, New York
[21] Tsallis, C., Introduction to nonextensive statistical mechanics: approaching a complex world (2009), Berlin: Springer, Berlin · Zbl 1172.82004
[22] Greer, JR; de Hosson, JThM, Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect, Prog Mat Sci, 56, 654-724 (2011) · doi:10.1016/j.pmatsci.2011.01.005
[23] Aifantis, KE; Hackney, SA, High energy density lithium batteries: materials (2010), Applications (Wiley-VCH: Engineering, Applications (Wiley-VCH
[24] Ryu, I.; Choi, JW; Cui, Y.; Nix, Y., Size-dependent fracture of Si nanowire battery anodes, J Mech Phys Solids, 59, 1717-1730 (2011) · doi:10.1016/j.jmps.2011.06.003
[25] Cui, Z.; Gao, F.; Qu, J., Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries, J Mech Phys Solids, 61, 293-310 (2013) · doi:10.1016/j.jmps.2012.11.001
[26] Cheng YT, Verbrugge MW, Desphande R (2013) Understanding diffusion-induced stresses in lithium ion battery electrodes, In: Kocks A, Wang J (Eds) IUTAM symposium on surface effects in the mechanics of nanomaterials and heterostrucures. Springer, Dordrecht
[27] Walgraef, D.; Aifantis, EC, Dislocation patterning in fatigued metals as a result of dynamical instabilities, J Appl Phys, 58, 688-691 (1985) · doi:10.1063/1.336183
[28] Pontes, J.; Walgraef, D.; Aifantis, EC, On dislocation patterning: multiple slip effects in the rate equation approach, Int J Plasticity, 22, 1486-1505 (2006) · Zbl 1331.74039 · doi:10.1016/j.ijplas.2005.07.011
[29] Spiliotis, KG; Russo, L.; Siettos, C.; Aifantis, EC, Analytical and numerical bifurcation analysis of dislocation pattern formation of the Walgraef-Aifantis model, Int J Non-Linear Mech, 102, 41-52 (2018) · doi:10.1016/j.ijnonlinmec.2018.03.002
[30] Hatzikirou, H.; Basanta, D.; Simon, M.; Schaller, K.; Deutsch, A., ‘Go or Grow’: the key to the emergence of invasion in tumour progression?, Math Med Biol, 29, 49-65 (2010) · Zbl 1234.92031 · doi:10.1093/imammb/dqq011
[31] Boettger, K.; Hatzikirou, H.; Voss-Böhme, A.; Cavalcanti-Adam, EA; Herrero, MA; Deutsch, A., An emerging Allee effect is critical for tumor initiation and persistence, PLoS Comp Biol, 11, E1004366 (2015) · doi:10.1371/journal.pcbi.1004366
[32] Murray, JD, Mathematical biology I: an introduction (2002), New York: Springer, New York · Zbl 1006.92001 · doi:10.1007/b98868
[33] Murray, JD, Mathematical Biology II: spatial models and biomedical applications (2003), New York: Springer, New York · Zbl 1006.92002 · doi:10.1007/b98869
[34] Aifantis, EC; Hirth, JP, The mechanics of dislocations (1985), Metals Park: ASM, Metals Park
[35] Aifantis EC, Walgraef D, Zbib HM (Eds) Material instabilities. Special Issue of Res Mechanica 23:97-305
[36] Estrin, Y.; Kubin, LP; Aifantis, EC, Introductory remarks to the viewpoint set in propagative plastic instabilities, Scripta Met Mater, 29, 1147-1150 (1993) · doi:10.1016/0956-716X(93)90100-7
[37] Aifantis, EC, Update on a class of gradient theories, Mech Mater, 35, 259-280 (2003) · doi:10.1016/S0167-6636(02)00278-8
[38] Kubin LP (1993) Dislocation patterning. In: Mughrabi H (Ed) Plastic deformation and fracture of materials. WILEY-VCH
[39] Kubin LP, Fressengeas C, Ananthakrishna G (2002) Collective behaviour of dislocations in plasticity. In: Nabarro FRN and Duesbery MS (Eds) Dislocations in solids. Elsevier
[40] Ananthakrishna, G., Current theoretical approaches to collective behavior of dislocations, Phys Rep, 440, 113-259 (2007) · doi:10.1016/j.physrep.2006.10.003
[41] Sauzay, M.; Kubin, LP, Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals, Prog Mater Sci, 56, 725-784 (2011) · doi:10.1016/j.pmatsci.2011.01.006
[42] Carpinteri A (ed) (1996) Size-scale effects in the failure mechanisms of materials and structures. CRC Press
[43] Muhlhaus, HB, Continuum models for materials with microstructure (1995), Chichester: Wiley, Chichester · Zbl 0878.73002
[44] de Borst, R.; van der Giessen, E., Material instabilities in solids (1998), Chichester: Wiley, Chichester
[45] Gutkin, MY; Aifantis, EC, Dislocations and disclinations in gradient elasticity, Phys Stat Sol B, 214, 245-284 (1999) · doi:10.1002/(SICI)1521-3951(199908)214:2<245::AID-PSSB245>3.0.CO;2-P
[46] Lazar, M.; Maugin, GA; Aifantis, EC, Dislocations in second strain gradient elasticity, Int J Sol Struct, 43, 1787-1817 (2006) · Zbl 1120.74343 · doi:10.1016/j.ijsolstr.2005.07.005
[47] Aifantis, EC, On non-singular GRADELA crack fields, Theor App Mech Lett, 4, 051005 (2014) · doi:10.1063/2.1405105
[48] Aifanti, EC; Gittus, J., Phase transformations (1986), New York: Elsevier, New York
[49] Suresh, S., Fatigue of materials (1991), Cambridge: Cambridge University Press, Cambridge
[50] Walgraef, D., Spatio-temporal pattern formation (1997), New York: Springer, New York · Zbl 0871.76003 · doi:10.1007/978-1-4612-1850-0
[51] Gutkin, MY; Ovid’ko, IA, Plastic deformation in nanocrystalline materials (2004), Berlin: Springer, Berlin · doi:10.1007/978-3-662-09374-0
[52] Ghoniem, N.; Walgraef, D., Instabilities and self-organization in materials (2008), Oxford: Oxford Science Publications, Oxford · Zbl 1151.74001 · doi:10.1093/acprof:oso/9780199298686.001.0001
[53] Gurtin, ME; Fried, E.; Anand, L., The mechanics and thermodynamics of continua (2010), New York: Cambridge University Press, New York · doi:10.1017/CBO9780511762956
[54] Po, G.; Lazar, M.; Seif, D.; Ghoniem, N., Singularity-free dislocation dynamics with strain gradient elasticity, J Mech Phys Solids, 68, 161-178 (2014) · Zbl 1328.74016 · doi:10.1016/j.jmps.2014.03.005
[55] Isaksson, P.; Dumont, PJJ; du Roscoat, SR, Crack growth in planar elastic fiber materials, Int J Solids Struct, 49, 1900-1907 (2012) · doi:10.1016/j.ijsolstr.2012.03.037
[56] Isaksson, P.; Hägglund, R., Crack-tip fields in gradient enhanced elasticity, Eng Fract Mech, 97, 186-192 (2013) · doi:10.1016/j.engfracmech.2012.11.011
[57] Bagni, C.; Askes, H.; Aifantis, EC, Gradient-enriched finite element methodology for axisymmetric problems, Acta Mech, 228, 1423-1444 (2017) · Zbl 1365.74152 · doi:10.1007/s00707-016-1762-7
[58] Tsagrakis I, Aifantis EC (2018) Gradient elasticity effects on the two-phase lithiation of LIB anodes. In: Altenbach H, Pouget J, Rousseau M, Collet B, Michelitsch T (Eds) Generalized models and non-classical approaches in complex materials 2. Springer
[59] Konstantinidis, AA; Aifantis, KE; de Hosson, JThM, Capturing the stochastic mechanical behavior of micro and nanopillars, Mater Sci Eng, A, 597, 89-94 (2014) · doi:10.1016/j.msea.2013.12.053
[60] Konstantinidis, AA; Zhang, X.; Aifantis, EC, On the combined gradient-stochastic plasticity model: application to Mo-micropillar compression, AIP Conf Proc, 1646, 3-9 (2015) · doi:10.1063/1.4908575
[61] Zaiser, M.; Avlonitis, M.; Aifantis, EC, Stochastic and deterministic aspects of strain localization during cyclic plastic deformation, Acta Mater, 48, 4143-4151 (1998) · doi:10.1016/S1359-6454(98)00120-7
[62] Avlonitis, M.; Zaiser, M.; Aifantis, EC, Some exactly solvable models for the statistical evolution of internal variables during plastic deformation, Prob Eng Mech, 15, 131-138 (2000) · doi:10.1016/S0266-8920(98)00035-6
[63] Chattopadhyay, AK; Aifantis, EC, Stochastically forced dislocation density distribution in plastic deformation, Phys Rev E, 94, 022139 (2016) · doi:10.1103/PhysRevE.94.022139
[64] Chattopadhyay, AK; Aifantis, EC, Double diffusivity model under stochastic forcing, Phys Rev E, 95, 052134 (2017) · doi:10.1103/PhysRevE.95.052134
[65] Zaiser, M.; Aifantis, EC, Avalanches and slip patterning in plastic deformation, J Mech Behav Mater, 14, 255-270 (2003) · doi:10.1515/JMBM.2003.14.4-5.255
[66] Zaiser, M.; Aifantis, EC, Randomness and slip avalanches in gradient plasticity, Int J Plasticity, 22, 1432-1455 (2006) · Zbl 1331.74035 · doi:10.1016/j.ijplas.2005.07.010
[67] Li, H.; Ngan, AHW; Wang, MG, Continuous strain bursts in crystalline and amorphous metals during plastic deformation by nanoindentation, J Mater Res, 20, 3072-3081 (2005) · doi:10.1557/JMR.2005.0379
[68] Iliopoulos, AC; Nikolaidis, NS; Aifantis, EC, Analysis of serrations and shear bands fractality in UFGs, J Mech Behav Mater, 24, 1-9 (2015) · doi:10.1515/jmbm-2015-0001
[69] Iliopoulos, AC; Aifantis, EC, Tsallis q-triplet, intermittent turbulence and Portevin-Le Chatelier effect, Phys A, 498, 17-32 (2018) · Zbl 1515.82011 · doi:10.1016/j.physa.2017.12.077
[70] Kawazoe, H.; Yoshida, M.; Basinski, ZS; Niewczas, M., Dislocation microstructures in fine-grained Cu polycrystals fatigued at low amplitude, Scripta Mater, 40, 639-644 (1999) · doi:10.1016/S1359-6462(98)00484-9
[71] Wang, D.; Volkert, CA; Kraft, O., Effect of length scale on fatigue life and damage formation in thin Cu films, Mat Sci Eng A, 493, 267-273 (2008) · doi:10.1016/j.msea.2007.06.092
[72] Unger, DJ; Gerberich, WW; Aifantis, EC, Further remarks on the implications of steady state stress assisted diffusion on environmental cracking, Scripta Metall, 16, 1059-1064 (1982) · doi:10.1016/0036-9748(82)90456-2
[73] Silber, G.; Trostel, R.; Alizadeh, M.; Benderoth, G., A continuum mechanical gradient theory with applications to fluid mechanics, J de Phy, 4, 8, 365-373 (1998)
[74] Fried, E.; Gurtin, ME, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch Rat Mech Anal, 182, 513-554 (2006) · Zbl 1104.74006 · doi:10.1007/s00205-006-0015-7
[75] Adams, JM; Fielding, SM; Olmsted, PD, The interplay between boundary conditions and flow geometries in shear banding: hysteresis, band configurations, and surface transitions, J Nonnewton Fluid Mech, 151, 101-118 (2008) · Zbl 1388.76066 · doi:10.1016/j.jnnfm.2008.01.008
[76] Cates, ME; Fielding, SM, Rheology of giant micelles, Adv Phys, 55, 799-879 (2006) · doi:10.1080/00018730601082029
[77] Dhont, JKG; Briels, WJ, Gradient and vorticity banding, Rheol Acta, 47, 257-281 (2008) · doi:10.1007/s00397-007-0245-0
[78] Ru, CQ; Aifantis, EC, A simple approach to solve boundary-value problems in gradient elasticity, Acta Mech, 101, 59-68 (1993) · Zbl 0783.73015 · doi:10.1007/BF01175597
[79] Giusteri, GG; Fried, E., Slender-body theory for viscous flow via dimensional reduction and hyperviscous regularization, Meccanica, 49, 2153-2167 (2014) · Zbl 1299.76050 · doi:10.1007/s11012-014-9890-4
[80] Vardoulakis, I.; Aifantis, EC, Gradient dependent dilatancy and its implications in shear banding and liquefaction, Ingenieur-Archiv, 59, 197-208 (1989) · doi:10.1007/BF00532250
[81] Vardoulakis I, Muhlhaus HB, Aifantis EC (1991) Continuum models for localized deformations in pressure sensitive materials. In: Beer G, Booker JR, Carter J (Eds) Computer methods and advances in geomechanics. Balkema Publishers, Rotterdam
[82] Vardoulakis, I.; Aifantis, EC, A gradient flow theory of plasticity for granular materials, Acta Mech, 87, 197-217 (1991) · Zbl 0735.73026 · doi:10.1007/BF01299795
[83] Vardoulakis, I.; Aifantis, EC, On the role of microstructure in the behavior of soils: Effects of higher order gradients and internal inertia, Mech Mat, 18, 151-158 (1994) · doi:10.1016/0167-6636(94)00002-6
[84] Oka, F.; Yashima, A.; Sawada, K.; Aifantis, EC, Instability of gradient-dependent elastoviscoplastic model for clay and strain localization, Comp Method Appl Mech Eng, 183, 67-86 (2000) · Zbl 0992.74019 · doi:10.1016/S0045-7825(99)00212-1
[85] di Prisco, C.; Imposimato, S.; Aifantis, EC, A visco-plastic constitutive model for granular soils modified according to non-local and gradient approaches, Int J Num Anal Meth Geomech, 26, 121-138 (2002) · Zbl 1112.74440 · doi:10.1002/nag.195
[86] Fyffe, B.; Schwerdtfeger, J.; Blackford, JR; Zaiser, M.; Konstantinidis, A.; Aifantis, EC, Fracture toughness of snow: the influence of layered microstructure, J Mech Behav Mater, 18, 195-215 (2007) · doi:10.1515/JMBM.2007.18.3.195
[87] Konstantinidis, A.; Cornetti, P.; Pugno, N.; Aifantis, EC, Application of gradient theory and quantized fracture mechanics in snow avalanches, J Mech Behav Mater, 19, 39-48 (2009) · doi:10.1515/JMBM.2009.19.1.39
[88] Haoxiang, C.; Qi, C.; Peng, L.; Kairui, L.; Aifantis, EC, Modeling the zonal disintegration of rocks near deep level tunnels by gradient internal variable continuous phase transition theory, J Mech Behav Mater, 24, 161-171 (2015) · doi:10.1515/jmbm-2015-0025
[89] Qi, C.; Wei, X.; Hongsen, W.; Aifantis, EC, On temporal-structural dynamic failure criteria for rocks, J Mech Behav Mater, 24, 173-181 (2015) · doi:10.1515/jmbm-2015-0026
[90] Efremidis, G.; Avlonitis, M.; Konstantinidis, A.; Aifantis, EC, A statistical study of precursor activity in earthquake-induced landslides, Comput Geotechn, 81, 137-142 (2017) · doi:10.1016/j.compgeo.2016.08.010
[91] Chen, H.; Qi, C.; Efremidis, G.; Dorogov, M.; Aifantis, EC, Gradient elasticity and size effect for the borehole problem, Acta Mech, 229, 3305-3318 (2018) · Zbl 1396.74078 · doi:10.1007/s00707-018-2109-3
[92] Ord, A.; Hobbs, BE, Fracture pattern formation in frictional, cohesive, granular material, Philos Trans R Soc A, 368, 95-118 (2010) · doi:10.1098/rsta.2009.0199
[93] Yue, YM; Xu, KY; Aifantis, EC, Microscale size effects on the electromechanical coupling in piezoelectric material for anti-plane problem, Smart Mater Struct, 23, 125043 (2014) · doi:10.1088/0964-1726/23/12/125043
[94] Yue, YM; Xu, KY; Chen, T.; Aifantis, EC, Size effects on magnetoelectric response of multiferroic composite with inhomogeneities, Phys B, 478, 36-42 (2015) · doi:10.1016/j.physb.2015.08.056
[95] Yue, YM; Xu, KY; Aifantis, EC, Strain gradient and electric field gradient effects in piezoelectric cantilever beams, J Mech Behav Mater, 24, 121-127 (2015) · doi:10.1515/jmbm-2015-0014
[96] Tarasov, VE; Trujillo, JJ, Fractional power-law spatial dispersion in electrodynamics, Annal Phys, 334, 1-23 (2013) · doi:10.1016/j.aop.2013.03.014
[97] Truesdell C, Toupin R (1960) The classical field theories. In: Flügge S (Ed) Principles of classical mechanics and field theory/Prinzipien der Klassischen Mechanik und Feldtheorie. Springer, Berlin · Zbl 0118.39702
[98] Zimmerman, JA; Webb, EB; Hoyt, JJ; Jones, RE; Klein, PA; Bammann, DJ, Calculation of stress in atomistic simulation, Model Simul Mater Sci Eng, 12, S319-S332 (2004) · doi:10.1088/0965-0393/12/4/S03
[99] Maranganti, R.; Sharma, P., Revisiting quantum notions of stress, Proc Royal Soc A, 466, 2097-2116 (2010) · Zbl 1190.81041 · doi:10.1098/rspa.2009.0636
[100] Davies, H., The physics of low-dimensional semiconductors (2000), Cambridge: Cambridge University Press, Cambridge
[101] Zhang, X.; Gharbi, M.; Sharma, P.; Johnson, HT, Quantum field induced strains in nanostructures and prospects for optical actuation, Int J Solids Struct, 46, 3810-3824 (2009) · Zbl 1176.74136 · doi:10.1016/j.ijsolstr.2009.07.006
[102] Vayenas, CG; Souentie, S., Gravity, Special Relativity, and the Strong Force (2012), Boston: Springer, Boston · doi:10.1007/978-1-4614-3936-3
[103] Vayenas, CG; Souentie, S.; Fokas, A., A Bohr-type model of a composite particle using gravity as the attractive force, Phys A, 405, 360-379 (2014) · doi:10.1016/j.physa.2014.03.045
[104] London, F., Zur Theorie und Systematik der Molekularkräfte, Z Physik, 63, 245-279 (1930) · JFM 56.1315.03 · doi:10.1007/BF01421741
[105] London, F., The general theory of molecular forces, Trans Faraday Soc, 33, 8-26 (1937) · doi:10.1039/tf937330008b
[106] Jones JE (1924) On the determination of molecular fields I. From the variation of the viscosity of a gas with temperature. Phil Trans A 106:441-462
[107] Israelachvili JN (2011) Intermolecular and surface forces. Academic Press
[108] Parson JM, Siska PE, Lee YT (1972) Intermolecular potentials from crossed-beam differential elastic scattering measurements. IV. Ar+Ar. J Chem Phys 56:1511-1516
[109] Stillinger, FH; Weber, TA, Computer simulation of local order in condensed phases of silicon, Phys Rev B, 31, 5262-5271 (1985) · doi:10.1103/PhysRevB.31.5262
[110] Lazar, M.; Maugin, GA; Aifantis, EC, On the theory of nonlocal elasticity of bi- Helmholtz type and some applications, Int J Solids Struct, 43, 1404-1421 (2006) · Zbl 1120.74342 · doi:10.1016/j.ijsolstr.2005.04.027
[111] Kioseoglou, J.; Dimitrakopulos, GP; Komninou, Ph; Karakostas, T.; Aifantis, EC, Dislocation core investigation by geometric phase analysis and the dislocation density tensor, J Phys D, 41, 035408 (2008) · doi:10.1088/0022-3727/41/3/035408
[112] Aifantis, EC, Non-singular dislocation fields. IOP Conf. Series, 3, 0712026 (2009)
[113] Tarasov, VE; Aifantis, EC, Toward fractional gradient elasticity, J Mech Behav Mater, 23, 41-46 (2014) · doi:10.1515/jmbm-2014-0006
[114] Tarasov, VE; Aifantis, EC, Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality, Commun Nonlinear Sci Numer Simulat, 22, 197-227 (2015) · Zbl 1398.35280 · doi:10.1016/j.cnsns.2014.10.002
[115] Aifantis EC (2019) Fractional generalizations of gradient mechanics, In: Tarasov VE (Ed) Handbook of fractional calculus with applications. De Gruyter, Berlin
[116] Tarasov, VE; Aifantis, EC, On fractional and fractal formulations of gradient linear and nonlinear elasticity, Acta Mech, 230, 2043-2070 (2019) · Zbl 1428.74039 · doi:10.1007/s00707-019-2373-x
[117] Parisis, K.; Konstantopoulos, I.; Aifantis, EC, Nonsingular solutions of GradEla models for dislocations: an extension to fractional GradEla, J Micromech Mol Phys, 3, 1840013 (2018) · doi:10.1142/S2424913018400131
[118] Samko, S.; Kilbas, A.; Marichev, O., Integrals and derivatives of fractional order and applications (1987), Minsk: Nauka i Tehnika, Minsk · Zbl 0617.26004
[119] Kilbas A, Srivastava M, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier · Zbl 1092.45003
[120] Mathai, A.; Saxena, RK; Haubold, HJ, The H-function: theory and applications (2010), New York: Springer, New York · Zbl 1181.33001 · doi:10.1007/978-1-4419-0916-9
[121] Eringen, AC, Microcontinuum field theories I: foundations and solids (1999), New York: Springer, New York · Zbl 0953.74002 · doi:10.1007/978-1-4612-0555-5
[122] Fleck, NA; Hutchinson, JW, Strain gradient plasticity, Adv Appl Mech, 33, 295-361 (1997) · Zbl 0894.73031 · doi:10.1016/S0065-2156(08)70388-0
[123] Fleck, NA; Hutchinson, JW, A reformulation of strain gradient plasticity, J Mech Phys Solids, 49, 2245-2271 (2001) · Zbl 1033.74006 · doi:10.1016/S0022-5096(01)00049-7
[124] Gurtin, ME; Anand, L., Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization, J Mech Phys Solids, 57, 405-421 (2009) · Zbl 1170.74311 · doi:10.1016/j.jmps.2008.12.002
[125] Gao, HJ; Huang, Y.; Nix, WD; Hutchinson, JW, Mechanism-based strain gradient plasticity - I, Theory J Mech Phys Solids, 47, 1239-1263 (1999) · Zbl 0982.74013 · doi:10.1016/S0022-5096(98)00103-3
[126] Nix, WD; Gao, HJ, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J Mech Phys Solids, 46, 411-425 (1998) · Zbl 0977.74557 · doi:10.1016/S0022-5096(97)00086-0
[127] de Borst, R.; Muhlhaus, HB, Gradient-dependent plasticity - formulation and algorithmic aspects, Int J Numer Method Eng, 35, 521-539 (1992) · Zbl 0768.73019 · doi:10.1002/nme.1620350307
[128] de Borst R, Pamin J, Sluys LJ (1995) Computational issues in gradient plasticity, In: Mühlhaus HB (Ed) Continuum models for materials with microstructure. Wiley, pp. 159-200 · Zbl 0900.73852
[129] Geers, MGD; Peerlings, RHJ; Brekelmans, WAM; de Borst, R., Phenomenological nonlocal approaches based on implicit gradient-enhanced damage, Acta Mech, 144, 1-15 (2000) · Zbl 0993.74006 · doi:10.1007/BF01181824
[130] Peerlings, RHJ; Poh, LH; Geers, MGD, An implicit gradient plasticity-damage theory for predicting size effects in hardening and softening, Eng Fract Mech, 95, 2-12 (2012) · doi:10.1016/j.engfracmech.2011.12.016
[131] Willis, JR, Some forms and properties of models of strain-gradient plasticity, J Mech Phys Solids, 123, 348-356 (2019) · Zbl 1474.74027 · doi:10.1016/j.jmps.2018.09.011
[132] Aifantis, KE; Willis, JR, The role of interfaces in enhancing the yield strength of composites and polycrystals, J Mech Phys Solids, 53, 1047-1070 (2005) · Zbl 1120.74316 · doi:10.1016/j.jmps.2004.12.003
[133] Polizzotto, C., Unified thermodynamic framework-for nonlocal/gradient continuum theories, Eur J Mech A Solid, 22, 651-668 (2003) · Zbl 1032.74505 · doi:10.1016/S0997-7538(03)00075-5
[134] Polizzotto, C., Interfacial energy effects within the framework of strain gradient plasticity, Int J Solids Struct, 46, 1685-1694 (2009) · Zbl 1217.74013 · doi:10.1016/j.ijsolstr.2008.12.010
[135] Voyiadjis, GZ; Song, Y., Strain gradient continuum plasticity theories: Theoretical, numerical and experimental investigations, Int J Plasticity, 121, 21-75 (2019) · doi:10.1016/j.ijplas.2019.03.002
[136] Goddard, JD, On linear non-local thermo-viscoelastic waves in fluids, Mat Mech Compl Sys, 6, 321-338 (2018) · Zbl 1421.35359 · doi:10.2140/memocs.2018.6.321
[137] Goddard, JD, On the stability of the \(\mu (I)\) rheology for granular flow, J Fluid Mech, 833, 302-331 (2017) · Zbl 1419.76672 · doi:10.1017/jfm.2017.651
[138] Kamrin, K.; Koval, G., Nonlocal constitutive relation for steady granular flow, Phys Rev Lett, 108, 178301 (2012) · doi:10.1103/PhysRevLett.108.178301
[139] Henann, DL; Kamrin, K., A predictive, size-dependent continuum model for dense granular flows, Proc Natl Acad Sci USA, 110, 6730-6735 (2013) · Zbl 1292.76070 · doi:10.1073/pnas.1219153110
[140] Forterre, Y.; Pouliquen, O., Flows of dense granular media, Annu Rev Fluid Mech, 40, 1-24 (2008) · Zbl 1136.76051 · doi:10.1146/annurev.fluid.40.111406.102142
[141] Fenistein, D.; van Hecke, M., Wide shear zones in granular bulk flow, Nature, 425, 256 (2003) · doi:10.1038/425256a
[142] Dijksman, JA; Wortel, GH; van Dellen, LTH; Dauchot, O.; van Hecke, M., Jamming, yielding, and rheology ofweakly vibrated granular media, Phys Rev Lett, 107, 108303 (2011) · doi:10.1103/PhysRevLett.107.108303
[143] Bocquet, L.; Colin, A.; Ajdari, A., Kinetic theory of plastic flow in soft gassy materials, Phys Rev Lett, 103, 036001 (2009) · doi:10.1103/PhysRevLett.103.036001
[144] Fischbach, E.; Sudarsky, D.; Szafer, A.; Talmadge, C.; Aronson, SH, Reanalysis of the Eötös experiment, Phys Rev Lett, 56, 3-6 (1986) · doi:10.1103/PhysRevLett.56.3
[145] Fischbach, E., The fifth force: a personal history, Eur Phys J H, 40, 385-467 (2015) · doi:10.1140/epjh/e2015-60044-5
[146] Bardhan, JP, Gradient models in molecular biophysics: progress, challenges, opportunities, J Mech Behav Mater, 22, 169-184 (2013) · doi:10.1515/jmbm-2013-0024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.