×

Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions. (English) Zbl 1501.92012


MSC:

92C32 Pathology, pathophysiology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92-08 Computational methods for problems pertaining to biology

References:

[1] A, Testing the “go or grow” hypothesis in human medulloblastoma cell lines in two and three dimensions, Neurosurgery, 53, 174-185 (2003) · doi:10.1227/01.NEU.0000072442.26349.14
[2] A, Dichotomy of astrocytoma migration and proliferation, Int. J. Cancer, 67, 275-282 (1996) · doi:10.1002/(SICI)1097-0215(19960717)67:2<275::AID-IJC20>3.0.CO;2-9
[3] A, Cost of migration: invasion of malignant gliomas and implications for treatment, J. Clin. Oncol., 21, 1624-1636 (2003) · doi:10.1200/JCO.2003.05.063
[4] K, In vivo switching of human melanoma cells between proliferative and invasive states, Cancer Res., 68, 650-656 (2008) · doi:10.1158/0008-5472.CAN-07-2491
[5] J, MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells, Mol. Cell, 37, 620-632 (2010) · doi:10.1016/j.molcel.2010.02.018
[6] L, Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer, Cancer Res., 72, 5712-5720 (2012) · doi:10.1158/0008-5472.CAN-12-2215
[7] J. Metzcar, Y. Wang, R. Heiland, P. Macklin, A review of cell-based computational modeling in cancer biology, JCO Clin. Cancer Inf., (2019), 1-13.
[8] J, The impact of proliferation-migration tradeoffs on phenotypic evolution in cancer, Sci. Rep., 9, 1-10 (2019)
[9] M, Identification of intrinsic in vitro cellular mechanisms for glioma invasion, J. Theor. Biol., 287, 131-147 (2011) · Zbl 1397.92370 · doi:10.1016/j.jtbi.2011.07.012
[10] T, Cell migration or cytokinesis and proliferation? - Revisiting the “go or grow” hypothesis in cancer cells in vitro, Exp. Cell Res., 319, 3094-3103 (2013) · doi:10.1016/j.yexcr.2013.08.018
[11] S, Examining go-or-grow using fluorescent cell-cycle indicators and cell-cycle-inhibiting drugs, Biophys. J., 118, 1243-1247 (2020) · doi:10.1016/j.bpj.2020.01.036
[12] J, The biology and mathematical modelling of glioma invasion: a review, J. R. Soc. Interface, 14, 20170490 (2017) · doi:10.1098/rsif.2017.0490
[13] K, Investigation of the migration/proliferation dichotomy and its impact on avascular glioma invasion, Math. Model. Nat. Phenom., 7, 105-135 (2012) · Zbl 1241.92036
[14] K, An emerging Allee effect is critical for tumor initiation and persistence, PLOS Comput. Biol., 11, e1004366 (2015) · doi:10.1371/journal.pcbi.1004366
[15] P. Gerlee, S. Nelander, The impact of phenotypic switching on glioblastoma growth and invasion, PLoS Comput. Biol., 8 (2012).
[16] H, ’Go or Grow’: the key to the emergence of invasion in tumour progression?, Math. Med. Biol., 29, 49-65 (2012) · Zbl 1234.92031 · doi:10.1093/imammb/dqq011
[17] H. N. Weerasinghe, P. M. Burrage, K. Burrage, D. V. Nicolau, Mathematical models of cancer cell plasticity, J. Oncol., (2019), 1-C.
[18] Y. Kim, H. Kang, S. Lawler, The role of the miR-451-AMPK signaling pathway in regulation of cell migration and proliferation in glioblastoma, in Mathematical Models of Tumor-Immune System Dynamics, Springer, New York, (2014), 25-155.
[19] A, Autowaves in the model of infiltrative tumour growth with migration-proliferation dichotomy, Math. Model. Nat. Phenom., 6, 27-38 (2011) · doi:10.1051/mmnp/20116703
[20] K, Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy, J. Biol. Dyn., 6, 54-71 (2012) · Zbl 1448.92064 · doi:10.1080/17513758.2011.590610
[21] O, A multilayer grow-or-go model for GBM: effects of invasive cells and anti-angiogenesis on growth, Bull. Math. Biol., 76, 2306-2333 (2014) · Zbl 1300.92043 · doi:10.1007/s11538-014-0007-y
[22] T, Traveling waves of a go-or-grow model of glioma growth, SIAM J. Appl. Math., 78, 1778-1801 (2018) · Zbl 1392.92044 · doi:10.1137/17M1146257
[23] C, Global existence for a go-or-grow multiscale model for tumor invasion with therapy, Math. Model. Methods Appl. Sci., 26, 2163-2201 (2016) · Zbl 1348.35282 · doi:10.1142/S021820251640011X
[24] E, Effects of anti-angiogenesis on glioblastoma growth and migration: model to clinical predictions, PLoS One, 9, e115018 (2014) · doi:10.1371/journal.pone.0115018
[25] A, A strongly degenerate diffusion-haptotaxis model of tumour invasion under the go-or-grow dichotomy hypothesis, Math. Methods Appl. Sci., 41, 2403-2428 (2018) · Zbl 1390.35383
[26] M, Biological invasion of an organism with separate mobile and stationary states: Modeling and analysis, Forma, 11, 1-25 (1996) · Zbl 1003.92517
[27] X. Ma, M. E. Schickel, M. D. Stevenson, A. L. Sarang-Sieminski, K. J. Gooch, S. N. Ghadiali, et al., Fibres in the extracellular matrix enable long-range stress transmission between cells, Biophys. J., 104 (2013), 1410-1418.
[28] N, A continuum approach to modelling cell-cell adhesion, J. Theor. Biol., 243, 98-113 (2006) · Zbl 1447.92113 · doi:10.1016/j.jtbi.2006.05.030
[29] T, Multiscale modelling of cancer response to oncolytic viral therapy, Math. Biosci., 310, 76-95 (2019) · Zbl 1425.92103 · doi:10.1016/j.mbs.2018.12.018
[30] J. Ahn, M. Chae, J. Lee, Nonlocal adhesion models for two cancer cell phenotypes in a multidimensional bounded domain, Z. Angew. Math. Phys., 72 (2021), 1-28. · Zbl 1465.92037
[31] M. Eckardt, K. J. Painter, C. Surulescu, A. Zhigun, Nonlocal and local models for taxis in cell migration: a rigorous limit procedure, J. Math. Biol., 81 (2020), 1251-1298. · Zbl 1458.35422
[32] R, Viruses in cancer treatment, Clin. Transl. Oncol., 15, 182-188 (2013) · doi:10.1007/s12094-012-0951-7
[33] M, Tumor restrictions to oncolytic virus, Biomedicines, 2, 163-194 (2014) · doi:10.3390/biomedicines2020163
[34] A, Non-local multiscale approaches for tumour-oncolytic viruses interactions, Math. Appl. Sci. Eng., 99, 1-27 (2020)
[35] D, A multiscale moving boundary model Arising in cancer invasion, Multiscale Model. Simul., 11, 309-335 (2013) · Zbl 1302.35379 · doi:10.1137/110839011
[36] N, Regulation of E-cadherin and \(\beta \)-catenin by Ca2+ in colon carcinoma is dependent on calcium-sensing receptor expression and function, Int. J. Cancer, 121, 1455-1462 (2007) · doi:10.1002/ijc.22858
[37] U, Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough, Biochim. Biophys. Acta Rev. Cancer, 1552, 39-45 (2001) · doi:10.1016/S0304-419X(01)00038-5
[38] J, Integrin ligands at a glance, J. Cell Sci., 119, 3901-3903 (2006) · doi:10.1242/jcs.03098
[39] K, Cell-cell adhesion in human fibroblasts requires calcium signaling, J. Cell Sci., 114, 1155-1167 (2001) · doi:10.1242/jcs.114.6.1155
[40] B, E-cadherin-catenin cell-cell adhesion complex and human cancer, Br. J. Surg., 87, 992-1005 (2000)
[41] M, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Networks Heterog. Media, 1, 399-439 (2006) · Zbl 1108.92023 · doi:10.3934/nhm.2006.1.399
[42] M. J. Oudin, O. Jonas, T. Kosciuk, L. C. Broye, B. C. Guido, J. Wyckoff, et al., Tumor cell-driven extracellular matrix remodeling drives haptotaxis during metastatic progression, Cancer Discovery, 6 (2016), 516-531.
[43] P, Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns, J. Theor. Biol., 361, 41-60 (2014) · Zbl 1303.92043 · doi:10.1016/j.jtbi.2014.07.010
[44] A, Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion, J. Theor. Biol., 250, 684-704 (2008) · Zbl 1397.92326 · doi:10.1016/j.jtbi.2007.10.026
[45] Z, Soft matrix is a natural stimulator for cellular invasiveness, Mol. Biol. Cell, 25, 457-469 (2014) · doi:10.1091/mbc.e13-05-0260
[46] A, Intercellular communication mediated by the extracellular calcium-sensing receptor, Nat. Cell Biol., 2, 392-398 (2000) · doi:10.1038/35017020
[47] R, Multiscale modelling of fibres dynamics and cell adhesion within moving boundary cancer invasion, Bull. Math. Biol., 81, 2176-2219 (2019) · Zbl 1417.92029 · doi:10.1007/s11538-019-00598-w
[48] C. Guiot, P. Degiorgis, P. Delsanto, P. Gabriele, T. Diesboeck, Does tumour growth follow a “universal law”?, J. Theor. Biol., 225 (2003), 147-151. · Zbl 1464.92065
[49] A. Laird, Dynamics of tumour growth, Br. J. Cancer, 18 (1964), 490-502.
[50] D, Hallmarks of cancer: The next generation, Cell, 144, 646-674 (2011) · doi:10.1016/j.cell.2011.02.013
[51] R. A. Weinberg, The Biology of Cancer, Garland Science, New York, 2006.
[52] P. R. Halmos, Measure Theory, Springer-Verlag, New York, USA, 1974. · Zbl 0283.28001
[53] S. Suveges, R. Eftimie, D. Trucu, Directionality of macrophages movement in tumour invasion: A multiscale moving-boundary approach, Bull. Math. Biol., 82 (2020), 1-48. · Zbl 1454.92010
[54] B, Mathematical modeling of glioma therapy using oncolytic viruses, Math. Biosci. Eng., 10, 565-578 (2013) · Zbl 1268.92058 · doi:10.3934/mbe.2013.10.565
[55] K, The impact of adhesion on cellular invasion processes in cancer and development, J. Theor. Biol., 264, 1057-1067 (2010) · Zbl 1406.92156 · doi:10.1016/j.jtbi.2010.03.033
[56] R, Multiscale dynamics of a heterotypic cancer cell population within a fibrous extracellular matrix, J. Theor. Biol., 486, 110040 (2020) · Zbl 1429.92058 · doi:10.1016/j.jtbi.2019.110040
[57] L, A multiscale mathematical model of tumour invasive growth, Bull. Math. Biol., 79, 389-429 (2017) · Zbl 1373.92065 · doi:10.1007/s11538-016-0237-2
[58] T, Multiscale moving boundary modelling of cancer interactions with a fusogenic oncolytic virus: The impact of syncytia dynamics, Math. Biosci., 323, 108296 (2020) · Zbl 1437.92056 · doi:10.1016/j.mbs.2019.108296
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.