×

Hydrodynamic stability in the presence of a stochastic forcing: a case study in convection. (English) Zbl 07868599

Summary: We investigate the stability of statistically stationary conductive states for Rayleigh-Bénard convection that arise due to a bulk stochastic internal heating. Our results indicate that stochastic forcing at small magnitude has little to no effect, while strong stochastic forcing has a destabilizing effect. The methodology put forth in this article, which combines rigorous analysis with careful computation, provides an approach to hydrodynamic stability which is applicable to a variety of systems subject to a large scale stochastic forcing.

MSC:

76E06 Convection in hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
76R10 Free convection
76M35 Stochastic analysis applied to problems in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow

Software:

Dedalus; CO5BOLD

References:

[1] Ahlers, G.; Grossmann, S.; Lohse, D., Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection, Rev. Modern Phys., 81, 503-537, 2009
[2] Chillà, F.; Schumacher, J., New perspectives in turbulent Rayleigh-Bénard convection, Eur. Phys. J. E, 35, 7, 1-25, 2012
[3] Rayleigh, L., On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side, Philos. Mag. J. Sci., 32, 192, 529-546, 1916 · JFM 46.1249.04
[4] Bénard, H., Les tourbillons cellulaires dans une nappe liquide, Rev. Génórale Sci. Pures Appl., 11, 1261-1271, 1900
[5] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability, 2004, Cambridge University Press · Zbl 1055.76001
[6] Goluskin, D., Internally Heated Convection and Rayleigh-Bénard Convection, 2015, Springer · Zbl 1356.80002
[7] Schubert, G.; Turcotte, D. L.; Olson, P., Mantle Convection in the Earth and Planets, 2001, Cambridge University Press
[8] Kippenhahn, R.; Weigert, A., Stellar Structure and Evolution, 1994, Springer
[9] Földes, J.; Glatt-Holtz, N.; Richards, G.; Thomann, E., Ergodic and mixing properties of the Boussinesq equations with a degenerate random forcing, J. Funct. Anal., 269, 8, 2427-2504, 2015 · Zbl 1354.37056
[10] Földes, J.; Glatt-Holtz, N. E.; Richards, G., Large Prandtl number asymptotics in randomly forced turbulent convection, NoDEA Nonlinear Differential Equations Appl., 26, 6, 2019, Paper No. 43 · Zbl 1427.76242
[11] Földes, J.; Glatt-Holtz, N.; Richards, G.; Whitehead, J. P., Ergodicity in randomly forced Rayleigh-Bénard convection, Nonlinearity, 29, 11, 3309-3345, 2016 · Zbl 1352.60088
[12] Graham, R.; Pleiner, H., Mode- mode coupling theory of the heat convection threshold, Phys. Fluids, 18, 2, 130-140, 1975 · Zbl 0299.76021
[13] Swift, J.; Hohenberg, P. C., Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15, 1, 319-328, 1977
[14] Ahlers, G.; Cross, M. C.; Hohenberg, P. C.; Safran, S., The amplitude equation near the convective threshold: application to time-dependent heating experiments, J. Fluid Mech., 110, 297-334, 1981 · Zbl 0467.76079
[15] Oh, J.; Ortiz de Zárate, J. M.; Sengers, J. V.; Ahlers, G., Dynamics of fluctuations in a fluid below the onset of Rayleigh-Bénard convection, Phys. Rev. E, 69, Article 021106 pp., 2004, URL https://link.aps.org/doi/10.1103/PhysRevE.69.021106
[16] Hohenberg, P. C.; Swift, J., Effects of additive noise at the onset of Rayleigh-Bénard convection, Phys. Rev. A, 46, 8, 4773-4785, 1992
[17] Meyer, C. W.; Ahlers, G.; Cannell, D. S., Stochastic influences on pattern formation in Rayleigh-Bénard convection: Ramping experiments, Phys. Rev. A, 44, 4, 2514-2537, 1991
[18] Venturi, D.; Choi, M.; Karniadakis, G., Supercritical quasi-conduction states in stochastic Rayleigh-Bénard convection, Int. J. Heat Mass Transfer, 55, 13, 3732-3743, 2012
[19] Hairer, M.; Mattingly, J. C., Ergodicity of the 2d navier-stokes equations with degenerate stochastic forcing, Ann. of Math., 993-1032, 2006 · Zbl 1130.37038
[20] Hairer, M.; Mattingly, J. C., Spectral gaps in Wasserstein distances and the 2d stochastic Navier-Stokes equations, Ann. Probab., 2050-2091, 2008 · Zbl 1173.37005
[21] Burns, K. J.; Vasil, G. M.; Oishi, J. S.; Lecoanet, D.; Brown, B. P.; Quataert, E., Dedalus: A flexible framework for spectrally solving differential equations, 023068, 2024
[22] Da Prato, G.; Zabczyk, J., (Stochastic Equations in Infinite Dimensions. Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, 1992, Cambridge University Press) · Zbl 0761.60052
[23] Kuksin, S.; Shirikyan, A., (Mathematics of Two-Dimensional Turbulence. Mathematics of Two-Dimensional Turbulence, Cambridge Tracts in Mathematics, no. 194, 2012, Cambridge University Press) · Zbl 1333.76003
[24] Ahlers, G., Turbulent convection, Physics, 2, 74, 7, 2009
[25] Wang, X., Infinite Prandtl number limit of Rayleigh-Bénard convection, Commun. Pure Appl. Math., 57, 1265-1285, 2004 · Zbl 1112.76032
[26] Wang, X., A note on long time behavior of solutions to the Boussinesq system at large Prandtl number, Contemp. Math., 371, 315-323, 2005 · Zbl 1080.35095
[27] Wang, X., Asymptotic behavior of global attractors to the Boussinesq system for Rayleigh-Bénard convection at large Prandtl number, Commun. Pure Appl. Math., 60, 9, 1293-1318, 2007 · Zbl 1143.35087
[28] Wang, X., Stationary statistical properties of Rayleigh-Bénard convection at large Prandtl number, Commun. Pure Appl. Math., 61, 789-815, 2008 · Zbl 1143.35351
[29] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 745, 2006, Cambridge University Press
[30] Freytag, Bernd; Steffen, Matthias; Ludwig, H-G; Wedemeyer-Böhm, Sven; Schaffenberger, Werner; Steiner, Oskar, Simulations of stellar convection with CO5BOLD, J. Comput. Phys., 231, 3, 919-959, 2012 · Zbl 1241.85003
[31] Da Prato, G.; Zabczyk, J., (Ergodicity for Infinite-Dimensional Systems. Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, vol. 229, 1996, Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0849.60052
[32] Goluskin, D., Internally heated convection beneath a poor conductor, J. Fluid Mech., 771, 36-56, 2015 · Zbl 1337.76058
[33] Sandrić, N., A note on the Birkhoff ergodic theorem, Results Math., 72, 1, 715-730, 2017 · Zbl 1386.60246
[34] Kallenberg, O.; Kallenberg, O., Foundations of Modern Probability, 1997, Springer · Zbl 0892.60001
[35] Meyn, S. P.; Tweedie, R. L., Markov Chains and Stochastic Stability, 2012, Springer Science & Business Media · Zbl 0925.60001
[36] Doering, C. R.; Gibbon, J. D., Applied Analysis of the Navier-Stokes Equations, 1995, Cambridge University Press · Zbl 0838.76016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.