×

Convolution quadrature methods for time-domain scattering from unbounded penetrable interfaces. (English) Zbl 1472.78021

Summary: This paper presents a class of boundary integral equation methods for the numerical solution of acoustic and electromagnetic time-domain scattering problems in the presence of unbounded penetrable interfaces in two spatial dimensions. The proposed methodology relies on convolution quadrature (CQ) schemes and the recently introduced windowed Green function (WGF) method. As in standard time-domain scattering from bounded obstacles, a CQ method of the user’s choice is used to transform the problem into a finite number of (complex) frequency-domain problems posed, in our case, on the domains containing unbounded penetrable interfaces. Each one of the frequency-domain transmission problems is then formulated as a second-kind integral equation that is effectively reduced to a bounded interface by means of the WGF method—which introduces errors that decrease super-algebraically fast as the window size increases. The resulting windowed integral equations can then be solved by means of any (accelerated or unaccelerated) off-the-shelf Nyström or boundary element Helmholtz integral equation solvers capable of handling complex wavenumbers with large imaginary part. A high-order Nyström method based on Alpert’s quadrature rules is used here. A variety of CQ schemes and numerical examples, including wave propagation in open waveguides as well as scattering from multiple layered media, demonstrate the capabilities of the proposed approach.

MSC:

78A45 Diffraction, scattering
74J20 Wave scattering in solid mechanics

References:

[1] Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG. 2010 MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687-702. (doi:10.1016/j.cpc.2009.11.008) · Zbl 1205.78003 · doi:10.1016/j.cpc.2009.11.008
[2] Taflove A, Hagness SC. 2005 Computational electrodynamics: the finite-difference time-domain method. Boston, MA: Artech House. · Zbl 0963.78001
[3] Jin JM. 2015 The finite element method in electromagnetics. New York, NY: John Wiley & Sons.
[4] Berenger JP. 1994 A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185-200. (doi:10.1006/jcph.1994.1159) · Zbl 0814.65129 · doi:10.1006/jcph.1994.1159
[5] Ha-Duong T. 2003 On retarded potential boundary integral equations and their discretisation. In Topics in computational wave propagation, pp. 301-336. Berlin, Germany: Springer. · Zbl 1051.78018
[6] Dominguez V, Salles N, Sayas FJ. 2017 Recent progress in time domain boundary integral equations. J. Integral Equ. Appl. 29, 1-4. (doi:10.1216/JIE-2017-29-1-1) · Zbl 1359.00020 · doi:10.1216/JIE-2017-29-1-1
[7] Lubich C. 1988 Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129-145. (doi:10.1007/BF01398686) · Zbl 0637.65016 · doi:10.1007/BF01398686
[8] Lubich C. 1988 Convolution quadrature and discretized operational calculus. II. Numer. Math. 52, 413-425. (doi:10.1007/BF01462237) · Zbl 0643.65094 · doi:10.1007/BF01462237
[9] Hackbusch W, Kress W, Sauter SA. 2007 Sparse convolution quadrature for time domain boundary integral formulations of the wave equation by cutoff and panel-clustering. In Boundary element analysis, pp. 113-134. Berlin, Germany: Springer. · Zbl 1298.65185
[10] Chen Q, Monk P, Wang X, Weile D. 2012 Analysis of convolution quadrature applied to the time-domain electric field integral equation. Commun. Comput. Phys. 11, 383-399. (doi:10.4208/cicp.121209.111010s) · Zbl 1373.78069 · doi:10.4208/cicp.121209.111010s
[11] Kielhorn L, Schanz M. 2008 Convolution quadrature method-based symmetric Galerkin boundary element method for 3-d elastodynamics. Int. J. Numer. Methods Eng. 76, 1724-1746. (doi:10.1002/nme.v76:11) · Zbl 1195.74239 · doi:10.1002/nme.v76:11
[12] Sayas FJ. 2016 Retarded potentials and time domain boundary integral equations: a road map, vol. 50. Berlin, Germany: Springer. · Zbl 1346.65047
[13] Banjai L, Schanz M. 2012 Wave propagation problems treated with convolution quadrature and BEM. In Fast boundary element methods in engineering and industrial applications, pp. 145-184. Berlin, Germany: Springer. · Zbl 1248.65103
[14] Hassell M, Sayas FJ. 2016 Convolution quadrature for wave simulations. In Numerical simulation in physics and engineering, pp. 71-159. Berlin, Germany: Springer. · Zbl 1351.65102
[15] Givoli D. 2013 Numerical methods for problems in infinite domains, vol. 33. Amsterdam, The Netherland: Elsevier. · Zbl 0788.76001
[16] Hagstrom T. 1999 Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8, 47-106. (doi:10.1017/S0962492900002890) · Zbl 0940.65108 · doi:10.1017/S0962492900002890
[17] Bebendorf M. 2008 Hierarchical matrices. Berlin, Germany: Springer. · Zbl 1151.65090
[18] Liu Y. 2009 Fast multipole boundary element method: theory and applications in engineering. Cambridge, UK: Cambridge University Press.
[19] Banjai L, Kachanovska M. 2014 Fast convolution quadrature for the wave equation in three dimensions. J. Comput. Phys. 279, 103-126. (doi:10.1016/j.jcp.2014.08.049) · Zbl 1352.65320 · doi:10.1016/j.jcp.2014.08.049
[20] Banjai L, Sauter S. 2009 Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47, 227-249. (doi:10.1137/070690754) · Zbl 1191.35020 · doi:10.1137/070690754
[21] Schädle A, López-Fernández M, Lubich C. 2006 Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28, 421-438. (doi:10.1137/050623139) · Zbl 1111.65114 · doi:10.1137/050623139
[22] Pérez-Arancibia C, Bruno OP. 2014 High-order integral equation methods for problems of scattering by bumps and cavities on half-planes. J. Opt. Soc. Am. A 31, 1738-1746. (doi:10.1364/JOSAA.31.001738) · doi:10.1364/JOSAA.31.001738
[23] Pérez-Arancibia CA. 2017 Windowed integral equation methods for problems of scattering by defects and obstacles in layered media. PhD thesis, California Institute of Technology.
[24] Lai J, Kobayashi M, Greengard L. 2014 A fast solver for multi-particle scattering in a layered medium. Opt. Express 22, 20 481-20 499. (doi:10.1364/OE.22.020481) · doi:10.1364/OE.22.020481
[25] Michalski KA, Mosig JR. 2016 Efficient computation of Sommerfeld integral tails—methods and algorithms. J. Electromagnet. Waves Appl. 30, 281-317. (doi:10.1080/09205071.2015.1129915) · doi:10.1080/09205071.2015.1129915
[26] Jiménez E, Cabrera F, del Rio JC. 1996 Sommerfeld: a FORTRAN library for computing Sommerfeld integrals. In Antennas and Propagation Society Int. Symp. Digest, Baltimore, MD, USA, 21-26 July 1996, vol. 2, pp. 966-969. IEEE. (doi:10.1109/APS.1996.549757) · doi:10.1109/APS.1996.549757
[27] Bruno OP, Garza E, Pérez-Arancibia C. 2017 Windowed Green function method for nonuniform open-waveguide problems. IEEE Trans. Antennas Propag. 65, 4684-4692. (doi:10.1109/TAP.2017.2728118) · doi:10.1109/TAP.2017.2728118
[28] Bruno OP, Lyon M, Pérez-Arancibia C, Turc C. 2016 Windowed Green function method for layered-media scattering. SIAM J. Appl. Math. 76, 1871-1898. (doi:10.1137/15M1033782) · Zbl 1356.78071 · doi:10.1137/15M1033782
[29] Bruno OP, Pérez-Arancibia C. 2017 Windowed Green function method for the Helmholtz equation in the presence of multiply layered media. Proc. R. Soc. A 473, 20170161. (doi:10.1098/rspa.2017.0161) · Zbl 1402.78011 · doi:10.1098/rspa.2017.0161
[30] Lu W, Lu YY, Qian J. 2018 Perfectly matched layer boundary integral equation method for wave scattering in a layered medium. SIAM J. Appl. Math. 78, 246-265. (doi:10.1137/17M1112510) · Zbl 1381.65096 · doi:10.1137/17M1112510
[31] Zhang L, Lee JH, Oskooi A, Hochman A, White JK, Johnson SG. 2011 A novel boundary element method using surface conductive absorbers for full-wave analysis of 3-D nanophotonics. J. Lightwave Technol. 29, 949-959. (doi:10.1109/JLT.2011.2107727) · doi:10.1109/JLT.2011.2107727
[32] Lai J, Greengard L, O’Neil M. 2018 A new hybrid integral representation for frequency domain scattering in layered media. Appl. Comput. Harmon. Anal. 45, 359-378. (doi:10.1016/j.acha.2016.10.005) · Zbl 1395.78038 · doi:10.1016/j.acha.2016.10.005
[33] Pestourie R, Pérez-Arancibia C, Lin Z, Shin W, Capasso F, Johnson SG. 2018 Inverse design of large-area metasurfaces. Opt. Express 26, 33 732-33 747. (doi:10.1364/OE.26.033732) · doi:10.1364/OE.26.033732
[34] Bruno O, Elling T, Paffenroth R, Turc C. 2009 Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations. J. Comput. Phys. 228, 6169-6183. (doi:10.1016/j.jcp.2009.05.020) · Zbl 1184.78017 · doi:10.1016/j.jcp.2009.05.020
[35] Bruno OP, Kunyansky LA. 2001 A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169, 80-110. (doi:10.1006/jcph.2001.6714) · Zbl 1052.76052 · doi:10.1006/jcph.2001.6714
[36] Colton D, Kress R. 2012 Inverse acoustic and electromagnetic scattering theory, vol. 93. New York, NY: Springer Science & Business Media. · Zbl 1425.35001
[37] Sauter SA, Schwab C. 2010 Boundary element methods. Berlin, Germany: Springer. · Zbl 1215.65183
[38] Hao S, Barnett AH, Martinsson PG, Young P. 2013 High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane. Adv. Comput. Math. 40, 245-272. (doi:10.1007/s10444-013-9306-3) · Zbl 1300.65093 · doi:10.1007/s10444-013-9306-3
[39] Alpert BK. 1999 Hybrid Gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20, 1551-1584. (doi:10.1137/S1064827597325141) · Zbl 0933.41019 · doi:10.1137/S1064827597325141
[40] Śmigaj W, Betcke T, Arridge S, Phillips J, Schweiger M. 2015 Solving boundary integral problems with BEM++. ACM Trans. Math. Softw. 41, 6. (doi:10.1145/2590830) · Zbl 1371.65127 · doi:10.1145/2590830
[41] Lubich C, Ostermann A. 1993 Runge-Kutta methods for parabolic equations and convolution quadrature. Math. Comput. 60, 105-131. (doi:10.1090/S0025-5718-1993-1153166-7) · Zbl 0795.65062 · doi:10.1090/S0025-5718-1993-1153166-7
[42] Betcke T, Salles N, Smigaj W. 2017 Overresolving in the Laplace domain for convolution quadrature methods. SIAM J. Sci. Comput. 39, A188-A213. (doi:10.1137/16M106474X) · Zbl 1360.65232 · doi:10.1137/16M106474X
[43] Kristensson G. 1980 A uniqueness theorem for Helmholtz’ equation: penetrable media with an infinite interface. SIAM J. Math. Anal. 11, 1104-1117. (doi:10.1137/0511096) · Zbl 0455.35045 · doi:10.1137/0511096
[44] Cutzach PM, Hazard C. 1998 Existence, uniqueness and analyticity properties for electromagnetic scattering in a two-layered medium. Math. Methods Appl. Sci. 21, 433-461. (doi:10.1002/(ISSN)1099-1476) · Zbl 0916.35119 · doi:10.1002/(ISSN)1099-1476
[45] Banjai L. 2010 Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments. SIAM J. Sci. Comput. 32, 2964-2994. (doi:10.1137/090775981) · Zbl 1216.65122 · doi:10.1137/090775981
[46] Lu W, Lu YY. 2014 Efficient high order waveguide mode solvers based on boundary integral equations. J. Comput. Phys. 272, 507-525. (doi:10.1016/j.jcp.2014.04.028) · Zbl 1349.78085 · doi:10.1016/j.jcp.2014.04.028
[47] Wang L, Cox JA, Friedman A. 1998 Modal analysis of homogeneous optical waveguides by the boundary integral formulation and the Nyström method. J. Opt. Soc. Am. A 15, 92-100. (doi:10.1364/JOSAA.15.000092) · doi:10.1364/JOSAA.15.000092
[48] Johnson S. 2011 Notes on FFT-based differentiation. Technical report, MIT Applied Mathematics. Cambridge, MA: MIT.
[49] Brekhovskikh LM, Godin OA. 2013 Acoustics of layered media I: plane and quasi-plane waves, vol. 10. Berlin, Germany: Springer Science & Business Media.
[50] Banjai L, Lubich C, Melenk J. 2011 Runge-Kutta convolution quadrature for operators arising in wave propagation. Numer. Math. 119, 1-20. (doi:10.1007/s00211-011-0378-z) · Zbl 1227.65027 · doi:10.1007/s00211-011-0378-z
[51] Anand A, Ovall J, Turc C. 2012 Well-conditioned boundary integral equations for two-dimensional sound-hard scattering problems in domains with corners. J. Int. Equ. Appl. 24, 321-358. (doi:10.1216/JIE-2012-24-3-321) · Zbl 1321.65186 · doi:10.1216/JIE-2012-24-3-321
[52] Dominguez V, Lyon M, Turc C. 2016 Well-posed boundary integral equation formulations and Nyström discretizations for the solution of Helmholtz transmission problems in two-dimensional Lipschitz domains. J. Int. Equ. Appl. 28, 395-440. (doi:10.1216/JIE-2016-28-3-395) · Zbl 1416.65488 · doi:10.1216/JIE-2016-28-3-395
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.