×

A continuous review, \((Q, r)\) inventory model for a deteriorating item with random demand and positive lead time. (English) Zbl 1458.90010

Summary: In this paper, a single-product, single-location inventory system is considered. A fraction of the stock is lost every time unit, i.e., inventory experiences continuous decay. Demand is uncertain and replenishments require a positive lead time. Shortages are allowed and backorders-lost sales mixtures are considered. Inventory is reviewed continuously and a \((Q, r)\) policy is applied. The problem is to find the order quantity and the reorder point that minimize the long-run expected total cost per time unit. It is known in literature that approaching this problem is a very difficult task. Moreover, very little research has been performed in this regard, although improvement of continuous review policy in an inventory system is a vital issue in ERP solutions, in particular for Industry 4.0. The cost model is developed by making some simplifying hypotheses and assuming that the dynamics of inventory level (i.e., stock on hand minus backorders) is captured through an Itō diffusion. An iterative method is proposed to minimize the cost function. Numerical experiments are performed to investigate the efficiency of the proposed model. Comparisons with an estimate of the optimal policy and with a former heuristic model are given. Results show that the model developed in this work should provide a very good approximation of the optimal policy over a reasonably wide range of parameter values. A sensitivity analysis is finally carried out in order to draw some managerial insights.

MSC:

90B05 Inventory, storage, reservoirs
90C15 Stochastic programming
90C59 Approximation methods and heuristics in mathematical programming
Full Text: DOI

References:

[1] Agrawal, S.; Banerjee, S.; Papachristos, S., Inventory model with deteriorating items, ramp-type demand and partially backlogged shortages for a two warehouse system, Appl. Math. Model., 37, 8912-8929 (2013) · Zbl 1426.90006
[2] Ai, X.-Y.; Zhang, J.-L.; Wang, L., Optimal joint replenishment policy for multiple non-instantaneous deteriorating items, Int. J. Prod. Res., 55, 4625-4642 (2017)
[3] Banerjee, S.; Agrawal, S., Inventory model for deteriorating items with freshness and price dependent demand: optimal discounting and ordering policies, Appl. Math. Model., 52, 53-64 (2017) · Zbl 1480.90011
[4] Benkherouf, L., On a stochastic inventory model with a generalized holding costs, Eur. J. Oper. Res., 182, 730-737 (2007) · Zbl 1121.90007
[5] Benkherouf, L.; Boumenir, A.; Aggoun, L., A diffusion inventory model for deteriorating items, Appl. Math. Comput., 138, 21-39 (2003) · Zbl 1031.65077
[6] Braglia, M.; Castellano, D.; Song, D., Distribution-free approach for stochastic Joint-Replenishment Problem with backorders-lost sales mixtures, and controllable major ordering cost and lead times, Comput. Oper. Res., 79, 161-173 (2017) · Zbl 1391.90008
[7] Chang, H.-C.; Ouyang, L.-Y.; Wu, K.-S.; Ho, C.-H., Integrated vendor – buyer cooperative inventory models with controllable lead time and ordering cost reduction, Eur. J. Oper. Res., 170, 481-495 (2006) · Zbl 1085.90002
[8] Chen, Z.; Sarker, B. R., Integrated production-inventory and pricing decisions for a single-manufacturer multi-retailer system of deteriorating items under JIT delivery policy, Int. J. Adv. Manuf. Technol., 89, 2099-2117 (2017)
[9] Chen, S.-C.; Teng, J.-T.; Skouri, K., Economic production quantity models for deteriorating items with up-stream full trade credit and down-stream partial trade credit, Int. J. Prod. Econ., 155, 302-309 (2014)
[10] Dey, J. K.; Mondal, S. K.; Maiti, M., Two storage inventory problem with dynamic demand and interval valued lead-time over finite time horizon under inflation and time-value of money, Eur. J. Oper. Res., 185, 170-194 (2008) · Zbl 1142.90005
[11] Eynan, A.; Kropp, D. H., Effective and simple EOQ-like solutions for stochastic demand periodic review systems, Eur. J. Oper. Res., 180, 1135-1143 (2007) · Zbl 1121.90010
[12] Gardiner, C. W., Handbook of stochastic methods: for physics, chemistry and the natural sciences (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1143.60001
[13] Ghare, P. M.; Schrader, G. P., A model for an exponentially decaying inventory, J. Ind. Engineering, 14, 238-243 (1963)
[14] Giri, B. C.; Chaudhuri, K. S., Deterministic models of perishable inventory with stock-dependent demand rate and nonlinear holding cost, Eur. J. Oper. Res., 105, 467-474 (1998) · Zbl 0955.90003
[15] Goyal, S. K.; Giri, B. C., Recent trends in modeling of deteriorating inventory, Eur. J. Oper. Res., 134, 1-16 (2001) · Zbl 0978.90004
[16] Hadley, G.; Whitin, T. M., Analysis of inventory systems (1963), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0133.42901
[17] Hariga, M.; Ben-Daya, M., Some stochastic inventory models with deterministic variable lead time, Eur. J. Oper. Res., 113, 42-51 (1999) · Zbl 0933.90005
[18] Hemmati, M.; Fatemi Ghomi, S. M.T.; Sajadieh, M. S., Vendor managed inventory with consignment stock for supply chain with stock- and price-dependent demand, Int. J. Prod. Res., 55, 5225-5242 (2017)
[19] Hsieh, T. P.; Dye, C. Y., Optimal dynamic pricing for deteriorating items with reference price effects when inventories stimulate demand, Eur. J. Oper. Res., 262, 136-150 (2017) · Zbl 1403.90027
[20] Janssen, L.; Claus, T.; Sauer, J., Literature review of deteriorating inventory models by key topics from 2012 to 2015, Int. J. Prod. Econ., 182, 86-112 (2016)
[21] Jha, J. K.; Shanker, K., A single-vendor single-buyer production-inventory model with controllable lead time and service level constraint for decaying items, Int. J. Prod. Res., 47, 6875-6898 (2009) · Zbl 1198.90038
[22] Kouki, C.; Babai, M. Z.; Jemai, Z.; Minner, S., A coordinated multi-item inventory system for perishables with random lifetime, Int. J. Prod. Econ., 181, 226-237 (2016)
[23] Lan, H.; Li, R.; Liu, Z.; Wang, R., Study on the inventory control of deteriorating items under VMI model based on bi-level programming, Expert Syst. Appl., 38, 9287-9295 (2011)
[24] Lashgari, M.; Taleizadeh, A. A.; Sadjadi, S. J., Ordering policies for non-instantaneous deteriorating items under hybrid partial prepayment, partial trade credit and partial backordering, J. Oper. Res. Soc., 69, 1167-1196 (2018)
[25] Law, A. M.; Kelton, W. D., Simulation modeling and analysis (2000), McGraw-Hill: McGraw-Hill New York, NY
[26] Li, N.; Chan, F. T.S.; Chung, S. H.; Tai, A. H., A Stochastic Production-Inventory Model in a Two-State Production System With Inventory Deterioration, Rework Process, and Backordering, IEEE Trans. Syst. Man, Cybern. Syst., 47, 916-926 (2017)
[27] Li, Y.; Zhang, S.; Han, J., Dynamic pricing and periodic ordering for a stochastic inventory system with deteriorating items, Automatica, 76, 200-213 (2017) · Zbl 1352.93103
[28] Lin, H.-J., Two-critical-number control policy for a stochastic production inventory system with partial backlogging, Int. J. Prod. Res., 55, 4123-4135 (2017)
[29] Maihami, R.; Karimi, B., Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts, Comput. Oper. Res., 51, 302-312 (2014) · Zbl 1348.90033
[30] Nahmias, S., Production and operations analysis (2013), McGraw-Hill/Irwin: McGraw-Hill/Irwin New York
[31] Nahmias, S., Perishable inventory systems (2011), Springer: Springer New York, NY
[32] Nahmias, S., Perishable inventory theory: A review, Oper. Res., 30, 680-708 (1982) · Zbl 0486.90033
[33] Nahmias, S., Approximation techniques for several stochastic inventory models, Comput. Oper. Res., 8, 141-158 (1981)
[34] Nahmias, S.; Wang, S. S., A heuristic lot size reorder point model for decaying inventories, Manage. Sci., 25, 90-97 (1979)
[35] Øksendal, B., Stochastic differential equations: an introduction with applications (2013), Springer-Verlag: Springer-Verlag Berlin
[36] Padmanabhan, G.; Vrat, P., EOQ models for perishable items under stock dependent selling rate, Eur. J. Oper. Res., 86, 281-292 (1995) · Zbl 0906.90054
[37] Pang, Z., Optimal dynamic pricing and inventory control with stock deterioration and partial backordering, Oper. Res. Lett., 39, 375-379 (2011) · Zbl 1235.90014
[38] Pervin, M.; Roy, S. K.; Weber, G.-W., Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Ann. Oper. Res., 260, 437-460 (2018) · Zbl 1381.90015
[39] Pinçe, C.; Gürler, U.; Berk, E., A continuous review replenishment-disposal policy for an inventory system with autonomous supply and fixed disposal costs, Eur. J. Oper. Res., 190, 421-442 (2008) · Zbl 1146.90322
[40] Platt, D. E.; Robinson, L. W.; Freund, R. B., Tractable (Q,R) heuristic models for constrained service levels, Manage. Sci., 43, 951-965 (1997) · Zbl 0890.90051
[41] Rong, M.; Mahapatra, N. K.; Maiti, M., A two warehouse inventory model for a deteriorating item with partially/fully backlogged shortage and fuzzy lead time, Eur. J. Oper. Res., 189, 59-75 (2008) · Zbl 1152.90319
[42] Sazvar, Z.; Baboli, A.; Akbari Jokar, M. R., A replenishment policy for perishable products with non-linear holding cost under stochastic supply lead time, Int. J. Adv. Manuf. Technol., 64, 1087-1098 (2013)
[43] Sazvar, Z.; Jokar, M. R.A.; Baboli, A., A new order splitting model with stochastic lead times for deterioration items, Int. J. Syst. Sci., 45, 1936-1954 (2014) · Zbl 1290.93209
[44] Silver, E. A.; Pyke, D. F.; Thomas, D. J., Inventory and production management in supply chains (2017), CRC Press: CRC Press Boca Raton, FL
[45] Skouri, K.; Konstantaras, I.; Papachristos, S.; Ganas, I., Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate, Eur. J. Oper. Res., 192, 79-92 (2009) · Zbl 1171.90326
[46] Skouri, K.; Konstantaras, I.; Papachristos, S.; Teng, J.-T., Supply chain models for deteriorating products with ramp type demand rate under permissible delay in payments, Expert Syst. Appl., 38, 14861-14869 (2011)
[47] Subasi, M.; Yildirim, N.; Yildiz, B., An improvement on Fibonacci search method in optimization theory, Appl. Math. Comput., 147, 893-901 (2004) · Zbl 1034.65046
[48] Tavakoli, S.; Taleizadeh, A. A., An EOQ model for decaying item with full advanced payment and conditional discount, Ann. Oper. Res., 259, 415-436 (2017) · Zbl 1384.90007
[49] Teng, J.-T.; Krommyda, I.-P.; Skouri, K.; Lou, K.-R., A comprehensive extension of optimal ordering policy for stock-dependent demand under progressive payment scheme, Eur. J. Oper. Res., 215, 97-104 (2011) · Zbl 1237.90031
[50] Valliathal, M.; Uthayakumar, R., Designing and computing optimal policies on a production model for non-instantaneous deteriorating items with shortages, Int. J. Prod. Res., 51, 215-229 (2013)
[51] Verma, A. K.; Ajit, S.; Karanki, D. R., Reliability and safety engineering (2016), Springer-Verlag: Springer-Verlag London
[52] Wee, H. M.; Widyadana, G. A., A production model for deteriorating items with stochastic preventive maintenance time and rework process with FIFO rule, Omega (United Kingdom), 41, 941-954 (2013)
[53] Wu, J.; Chang, C. T.; Teng, J. T.; Lai, K. K., Optimal order quantity and selling price over a product life cycle with deterioration rate linked to expiration date, Int. J. Prod. Econ., 193, 343-351 (2017)
[54] Wu, J.; Skouri, K.; Teng, J.-T.; Hu, Y., Two inventory systems with trapezoidal-type demand rate and time-dependent deterioration and backlogging, Expert Syst. Appl., 46, 367-379 (2016)
[55] Wu, J.; Teng, J.-T.; Skouri, K., Optimal inventory policies for deteriorating items with trapezoidal-type demand patterns and maximum lifetimes under upstream and downstream trade credits, Ann. Oper. Res., 264, 459-476 (2018) · Zbl 1391.90034
[56] Yao, D., Joint pricing and inventory control for a stochastic inventory system with Brownian motion demand, IISE Trans, 49, 1101-1111 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.