×

Discrete Weierstrass-type representations. (English) Zbl 1526.53015

The authors show that the known discrete Weierstrass-type representations of certain surface classes, such as discrete \(L\)-isothermic surfaces, can be understood as applications of the \(\Omega\)-dual transform to light-like Gauss maps in Laguerre geometry, giving rise to further Weierstrass-type representations. This leads to a proof that all discrete linear Weingarten surfaces of Bryant or Bianchi type locally arise via Weierstrass-type representations from discrete holomorphic maps. They also show that the Calapso transformation descends to the Lawson correspondence and gives rise to a discrete analogue of the duality for constant mean curvature \(1\) surfaces in \({\mathbb H}^3\) developed in [M. Umehara and K. Yamada, Tsukuba J. Math. 21, No. 1, 229–237 (1997; Zbl 1027.53010)].

MSC:

53A70 Discrete differential geometry
51B15 Laguerre geometries

Citations:

Zbl 1027.53010

References:

[1] Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, vol. 3: Differentialgeometrie der Kreise und Kugeln. Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen. Springer, Berlin (1929) · JFM 55.0422.01
[2] Bobenko, AI; Hertrich-Jeromin, U.; Lukyanenko, I., Discrete constant mean curvature nets in space forms: Steiner’s formula and Christoffel duality, Discrete Comput. Geom., 52, 4, 612-629 (2014) · Zbl 1312.53011 · doi:10.1007/s00454-014-9622-5
[3] Bobenko, AI; Hoffmann, T.; Springborn, BA, Minimal surfaces from circle patterns: geometry from combinatorics, Ann. Math., 164, 1, 231-264 (2006) · Zbl 1122.53003 · doi:10.4007/annals.2006.164.231
[4] Bobenko, A.; Pinkall, U., Discrete isothermic surfaces, J. Reine Angew. Math., 475, 187-208 (1996) · Zbl 0845.53005
[5] Bobenko, AI; Pottmann, H.; Wallner, J., A curvature theory for discrete surfaces based on mesh parallelity, Math. Ann., 348, 1, 1-24 (2010) · Zbl 1219.51014 · doi:10.1007/s00208-009-0467-9
[6] Bobenko, AI; Suris, YuB, Isothermic surfaces in sphere geometries as Moutard nets, Proc. R. Soc. Lond. Ser. A, 463, 2088, 3171-3193 (2007) · Zbl 1142.53014
[7] Bobenko, A.I., Suris, Yu.B.: Discrete Differential Geometry. Integrable Structure. Graduate Studies in Mathematics, vol. 98. American Mathematical Society, Providence (2008) · Zbl 1158.53001
[8] Bryant, RL, Surfaces of mean curvature one in hyperbolic space, Astérisque, 154-155, 321-347 (1988) · Zbl 0635.53047
[9] Burstall, F.E., Cho, J., Hertrich-Jeromin, U., Pember, M., Rossman, W.: Discrete \(\Omega \)-nets and Guichard nets. Accepted for publication in Proceedings of the London Mathematical Society (2020) · Zbl 07740438
[10] Burstall, F., Hertrich-Jeromin, U., Rossman, W.: Discrete linear Weingarten surfaces. Nagoya Math. J. 231, 55-88 (2018) · Zbl 1411.53007
[11] Burstall, F.; Hertrich-Jeromin, U.; Rossman, W.; Santos, S., Discrete surfaces of constant mean curvature, RIMS Kôkûroku, 1880, 133-179 (2014) · Zbl 1308.53020
[12] Cecil, ThE, Lie Sphere Geometry (2008), New York: Universitext. Springer, New York · Zbl 1134.53001
[13] Demoulin, A., Sur les surfaces \(\Omega \), C. R. Acad. Sci., 153, 927-929 (1911) · JFM 42.0634.01
[14] Demoulin, A., Sur les surfaces \(R\) et les surfaces \(\Omega \), C. R. Acad. Sci., 153, 590-593 (1911) · JFM 42.0695.01
[15] Demoulin, A., Sur les surfaces \(R\) et sur les surfaces \(\Omega \), C. R. Acad. Sci., 153, 705-707 (1911) · JFM 42.0695.02
[16] Dubois, J., Hertrich-Jeromin, U., Szewieczek, G.: Notes on flat fronts in hyperbolic space. J. Geom. 113(1), # 20 (2022) · Zbl 1491.53070
[17] Hertrich-Jeromin, U., Transformations of discrete isothermic nets and discrete cmc-1 surfaces in hyperbolic space, Manuscripta Math., 102, 4, 465-486 (2000) · Zbl 0979.53008 · doi:10.1007/s002290070037
[18] Hertrich-Jeromin, U., Szewieczek, G.: Discrete cyclic systems and circle congruences. Ann. Matematica Pura Appl. (1923-) (2022). https://link.springer.com/article/10.1007/s10231-022-01219-5 · Zbl 1504.53027
[19] Hoffmann, T.; Rossman, W.; Sasaki, T.; Yoshida, M., Discrete flat surfaces and linear Weingarten surfaces in hyperbolic 3-space, Trans. Am. Math. Soc., 364, 11, 5605-5644 (2012) · Zbl 1277.53053 · doi:10.1090/S0002-9947-2012-05698-4
[20] Honda, A.; Izumiya, Sh, The lightlike geometry of marginally trapped surfaces in Minkowski space-time, J. Geom., 106, 1, 185-210 (2015) · Zbl 1319.53012 · doi:10.1007/s00022-015-0266-2
[21] Izumiya, Sh, Legendrian dualities and spacelike hypersurfaces in the lightcone, Mosc. Math. J., 9, 2, 325-357 (2009) · Zbl 1188.53055 · doi:10.17323/1609-4514-2009-9-2-325-357
[22] Lam, W.Y.: CMC-1 surfaces via osculating Möbius transformations between circle patterns (2020). arXiv:2007.04253
[23] Liu, HL, Surfaces in the lightlike cone, J. Math. Anal. Appl., 325, 2, 1171-1181 (2007) · Zbl 1108.53011 · doi:10.1016/j.jmaa.2006.02.064
[24] Müller, Ch, On discrete constant mean curvature surfaces, Discrete Comput. Geom., 51, 3, 516-538 (2014) · Zbl 1301.52005 · doi:10.1007/s00454-014-9577-6
[25] Pember, M., Weierstrass-type representations, Geom. Dedicata, 204, 299-309 (2020) · Zbl 1433.53015 · doi:10.1007/s10711-019-00456-y
[26] Pottmann, H., Liu, Y.: Discrete surfaces in isotropic geometry. In: Mathematics of Surfaces XII (Sheffield 2007). Lecture Notes in Computer Science, vol. 4647, pp. 341-363. Springer, Berlin (2007) · Zbl 1163.68359
[27] Rossman, W., Yasumoto, M.: Discrete linear Weingarten surfaces with singularities in Riemannian and Lorentzian spaceforms. In: Singularities in Generic Geometry (Kobe-Kyoto 2015). Advanced Studies in Pure Mathematics, vol. 78, pp. 383-410. Mathematical Society Japan, Tokyo (2018) · Zbl 1431.53014
[28] Sachs, H., Isotrope Geometrie des Raumes (1990), Braunschweig: Friedr. Vieweg & Sohn, Braunschweig · Zbl 0703.51001 · doi:10.1007/978-3-322-83785-1
[29] Strubecker, K., Differentialgeometrie des isotropen Raumes, III. Flächentheorie. Math. Z., 48, 369-427 (1942) · Zbl 0027.25301 · doi:10.1007/BF01180022
[30] Umehara, M.; Yamada, K., A parametrization of the Weierstrass formulae and perturbation of complete minimal surfaces in \({\textbf{R} }^3\) into the hyperbolic \(3\)-space, J. Reine Angew. Math., 432, 93-116 (1992) · Zbl 0757.53033
[31] Umehara, M.; Yamada, K., A duality on CMC-1 surfaces in hyperbolic space, and a hyperbolic analogue of the Osserman inequality, Tsukuba J. Math., 21, 1, 229-237 (1997) · Zbl 1027.53010 · doi:10.21099/tkbjm/1496163174
[32] Weierstrass, K.T.: Untersuchungen über die Flächen, deren mittlere Krümmung überall gleich Null ist. In: Monatsberichte der Königlich Preussischen Akademie der Wissenschaften 1866, pp. 612-625. Königlich Preussischen Akademie der Wissenschaften, Berlin (1867)
[33] Yasumoto, M., Discrete maximal surfaces with singularities in Minkowski space, Differ. Geom. Appl., 43, 130-154 (2015) · Zbl 1328.53010 · doi:10.1016/j.difgeo.2015.09.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.