×

Hierarchical graph embedding in vector space by graph pyramid. (English) Zbl 1428.68224

Summary: Loss of information is the major challenge in graph embedding in vector space which reduces the impact of representational power of graphs in pattern recognition tasks. The objective of this article is to present a hierarchical framework which can decrease this loss in a reasonable computational time. Inspired by multi-resolution ideas in image processing, a graph pyramid is formed based on a selected graph summarization algorithm which can provide the required information for classification. All the pyramid levels or some of them are embedded into a vector through an available embedding method which constructs an informative description containing both local and global features. The experiments are conducted on graphs with numerical and categorical attributes. In the numerical case, a proposed summarization algorithm is applied while in the categorical case, \(k\)-SNAP graph summarization is applied. The results indicate that this new framework is efficient in terms of accuracy and time consumption in the context of classification problems. It is observed that this improvement is achieved regardless of selected embedding techniques.

MSC:

68R10 Graph theory (including graph drawing) in computer science
Full Text: DOI

References:

[1] Riesen, K.; Bunke, H., Graph Classification and Clustering Based on Vector Space Embedding (2010), World Scientific Publishing Co., Inc.: World Scientific Publishing Co., Inc. River Edge, NJ, USA · Zbl 1231.68233
[2] Gibert, J.; Valveny, E.; Bunke, H., Graph embedding in vector spaces by node attribute statistics, Pattern Recognit., 45, 9, 3072-3083 (2012)
[3] Luqman, M. M.; Ramel, J.-Y.; Lladós, J.; Brouard, T., Fuzzy multilevel graph embedding, Pattern Recognit., 46, 2, 551-565 (2013) · Zbl 1251.68191
[4] Wilson, R.; Hancock, E.; Luo, B., Pattern vectors from algebraic graph theory, IEEE Trans. Pattern Anal. Mach. Intell., 27, 7, 1112-1124 (2005)
[5] Ren, P.; Wilson, R.; Hancock, E., Graph characterization via ihara coefficients, IEEE Trans. Neural Netw., 22, 2, 233-245 (2011)
[6] Aziz, F.; Wilson, R.; Hancock, E., Backtrackless walks on a graph, IEEE Trans. Neural Netw. Learn. Syst., 24, 6, 977-989 (2013)
[7] Xiao, B.; Hancock, E. R.; Wilson, R. C., Graph characteristics from the heat kernel trace, Pattern Recognit., 42, 11, 2589-2606 (2009) · Zbl 1175.68403
[8] Adelson, E. H.; Anderson, C. H.; Bergen, J. R.; Burt, P. J.; Ogden, J. M., Pyramid methods in image processing, RCA Eng., 29, 6, 33-41 (1984)
[9] Jolion, J. M.; Rosenfeld, A., A Pyramid Framework for Early Vision: Multiresolutional Computer Vision (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Norwell, MA, USA
[12] Pekalska, E.; Duin, R. P.W., The Dissimilarity Representation for Pattern Recognition: Foundations And Applications (2005), World Scientific: World Scientific USA · Zbl 1095.68105
[15] Luo, B.; Wilson, R. C.; Hancock, E. R., Spectral embedding of graphs, Pattern Recognit., 36, 10, 2213-2230 (2003) · Zbl 1054.68105
[17] Vázquez-Martn, R.; Marfil, R.; Núñez, P.; Bandera, A.; Sandoval, F., A novel approach for salient image regions detection and description, Pattern Recognit. Lett., 30, 16, 1464-1476 (2009)
[19] Burt, P.; Hong, T.-H.; Rosenfeld, A., Segmentation and estimation of image region properties through cooperative hierarchial computation, IEEE Trans. Syst. Man Cybern., 11, 12, 802-809 (1981)
[20] Marfil, R.; Molina-Tanco, L.; Bandera, A.; Rodríguez, J.; Sandoval, F., Pyramid segmentation algorithms revisited, Pattern Recognit., 39, 8, 1430-1451 (2006) · Zbl 1094.68687
[21] Kropatsch, W. G.; Haxhimusa, Y.; Pizlo, Z.; Langs, G., Vision pyramids that do not grow too high, Pattern Recognit. Lett., 26, 3, 319-337 (2005)
[22] Pizlo, Z.; Rosenfeld, A.; Epelboim, J., An exponential pyramid model of the time-course of size processing, Vis. Res., 35, 8, 1089-1107 (1995)
[24] Chakrabarti, D.; Faloutsos, C., Graph mining: laws, generators, and algorithms, ACM Comput. Surv., 38, 1 (2006)
[25] Han, J.; Pei, J.; Yin, Y.; Mao, R., Mining frequent patterns without candidate generation: A frequent-pattern tree approach, Data Mining Knowl. Discov., 8, 1, 53-87 (2004)
[26] Newman, M. E.J.; Girvan, M., Finding and evaluating community structure in networks, Phys. Rev. E, 69, 026113 (2004)
[29] Shi, J.; Malik, J., Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 22, 8, 888-905 (2000)
[30] Kulis, B.; Basu, S.; Dhillon, I.; Mooney, R., Semi-supervised graph clustering: a kernel approach, Mach. Learn., 74, 1, 1-22 (2009) · Zbl 1472.68144
[31] Karypis, G.; Kumar, V., Multilevelk-way partitioning scheme for irregular graphs, J. Parallel Distrib. Comput., 48, 1, 96-129 (1998)
[32] Jiang, X.; Munger, A.; Bunke, H., An median graphs: properties, algorithms, and applications, IEEE Trans. Pattern Anal. Mach. Intell., 23, 10, 1144-1151 (2001)
[33] Riesen, K.; Bunke, H., Approximate graph edit distance computation by means of bipartite graph matching, Image Vis. Comput., 27, 7, 950-959 (2009)
[37] Borgwardt, K. M.; Ong, C. S.; Schönauer, S.; Vishwanathan, S. V.N.; Smola, A. J.; Kriegel, H.-P., Protein function prediction via graph kernels, Bioinformatics, 21, 1, 47-56 (2005)
[39] Borzeshi, E. Z.; Piccardi, M.; Riesen, K.; Bunke, H., Discriminative prototype selection methods for graph embedding, Pattern Recognit., 46, 6, 1648-1657 (2013) · Zbl 1264.68124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.