×

Extensions of the Shannon entropy and the chaos game algorithm to hyperbolic numbers plane. (English) Zbl 1493.60006

Summary: In this paper, we provide extensions to hyperbolic numbers plane of the classical Chaos game algorithm and the Shannon entropy. Both notions connected with that of probability with values in hyperbolic number, introduced by D. Alpay et al. [Adv. Appl. Clifford Algebr. 27, No. 2, 913–929 (2017; Zbl 1388.60011)]. Within this context, particular attention has been paid to the interpretation of the hyperbolic valued probabilities and the hyperbolic extension of entropy as well.

MSC:

60A05 Axioms; other general questions in probability
60A10 Probabilistic measure theory
62B10 Statistical aspects of information-theoretic topics
94A17 Measures of information, entropy

Citations:

Zbl 1388.60011

References:

[1] Alpay, D., Luna-Elizarrarás, M. E. and Shpairo, M., Kolmogorov’s axioms for probabilities with values in hyperbolic numbers, Adv. Appl. Clifford Algebras27(2) (2017) 913-929. · Zbl 1388.60011
[2] J. Cockle, On certain functions resembling quaternions and on a new imaginary in algebra, London-Dublin-Edinburgh Philos. Magaz. Sci. J.32(3) (1848) 435-439.
[3] Segre, C., Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann.40(3) (1892) 413-467. · JFM 24.0640.01
[4] Luna-Elizarrarás, M. E., Shapiro, M., Struppa, D. C. and Vajiac, A., Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers, 1st edn. (Birkhäuser/Springer, Switzerland, 2015). · Zbl 1345.30002
[5] Vignaux, J. C., Durañona, A. and Vieda, On the theory of functions of an hyperbolic complex variable, Univ Nac. La Plata. Publ. Fuc. Ci. Fisicomat. Contrib.104 (1935) 139-183. · JFM 62.1122.03
[6] Sobczyk, G., The hyperbolic number plane, College Math. J.26(4) (1995) 268-280.
[7] Sobczyk, G., Complex and hyperbolic numbers, in New Foundations in Mathematics (Birkhäuser, Boston, 2013).
[8] Shannon, C. E., A mathematical theory of communication, Bell Syst. Tech. J.27 (1948) 379-423, 623-656. · Zbl 1154.94303
[9] Erdös, P., On the distribution function of additive functions, Ann. of Math.47(1) (1946) 1-20. · Zbl 0061.07902
[10] Rényi, A., On measures of entropy and information, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, University California Press, Berkeley, California, USA, 1961, pp. 547-561. · Zbl 0106.33001
[11] D. K. Fadeev, In Arbeiten zur Informationstheorie. 1. Zum Begriff der Entropie einer endlichen Wahrscheinlichkeitsschernas. ed. A. J. Chinčin (Dt. Verlag d. Wiss., Berlin, DE, 1957), pp. 85-90.
[12] Nambiar, K. K., Varma, P. K. and Saroch, V., An axiomatic definition of Shannon’s entropy, Appl. Math. Lett.5(4) (1992) 45-46. · Zbl 0758.94003
[13] Velimir, I. M. and Stanković, M. S., An axiomatic characterization of generalized entropies under analyticity condition, Appl. Math. Inf. Sci.9(2) (2015) 609-613.
[14] Aczél, J. and Daróczy, Z., On Measures of Information and Their Characterizations (Academic Press, New York, 1975). · Zbl 0345.94022
[15] Ebanks, B., Sahoo, P. and Sander, W., Characterizations of Information Measures (World Scientific, Singapore, 1997). · Zbl 0923.94002
[16] Arora, P. N., On characterizing some generalizations of Shannon’s entropy, Inform. Sci.21(1) (1980) 13-22. · Zbl 0451.94002
[17] Arora, P. N., On the Shannon measure of entropy, Inform. Sci.23(1) (1981) 1-9. · Zbl 0458.94026
[18] Ubriaco, M. R., Entropies based on fractional calculus, Phys. Lett. A373(30) (2009) 2516-2519. · Zbl 1231.82024
[19] Karci, A., Fractional order entropy: New perspective, Optik.127(20) (2016) 9172-9177.
[20] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J. Statist. Phys.52 (1988) 479-487. · Zbl 1082.82501
[21] Esteban, M. D., A general class of entropy statistics, Appl. Math.42(3) (1997) 161-169. · Zbl 0898.62004
[22] Esteban, M. D. and Morales, D., A summary on entropy statistics, Kybernetika (Prague)31(4) (1995) 337-346. · Zbl 0857.62002
[23] Furuichi, S., Characterizations of generalized entropy functions by functional equations, Adv. Math. Phys.2011 (2011) 16108. · Zbl 1253.94033
[24] Balankin, A. S., Bory-Reyes, J., Luna-Elizarrarás, M. E. and Shapiro, M., Cantor-type sets in hyperbolic numbers, Fractals24(4) (2016) 1650051. · Zbl 1357.28008
[25] Téllez-Sánchez, G. Y. and Bory-Reyes, J., More about Cantor like sets in hyperbolic numbers, Fractals25(5) (2017) 1750046. · Zbl 1375.28019
[26] Téllez-Sánchez, G. Y. and Bory-Reyes, J., Generalized iterated function systems on hyperbolic number plane, Fractals27(4) (2019) 1950045. · Zbl 1433.37043
[27] Barnsley, M. F., Fractals Everywhere, 1st edn. (Academic Press, London, 1988). · Zbl 0691.58001
[28] Barnsley, M. F. and Vince, A., The chaos game on a general iterated function system, Ergod. Theory Dyn. Syst.31(4) (2011) 1073-1079. · Zbl 1221.37079
[29] Barnsley, M. F., Superfractals, 1st edn. (Cambridge University Press, New York, 2006). · Zbl 1123.28007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.