×

Characterizing ring derivations of all orders via functional equations: results and open problems. (English) Zbl 1358.39010

The authors focus on a class of functional equations for additive functions that have derivations (of various orders) as solutions. They solve functional equations that characterize derivations among all the additive maps on a given ring. In the process, they provide a unifying framework for the treatment of equations of the form \[ \sum_{k=1}^nx^{pk}f_k(x^{qk})=0 \] for additive maps \(f_k\) and integers \(p_k,q_k\) \((1\leq k\leq n)\).
Also, they propose some problems for further research. These results are stated for functions on integral domains of characteristic zero. For this consideration, they restrict their attention to fields of characteristic zero. The authors introduce some examples of ring derivations.
It is worth to mention that these results could be formulated for integral domains or fields of sufficiently large characteristic as well.

MSC:

39B52 Functional equations for functions with more general domains and/or ranges
13N15 Derivations and commutative rings
16W25 Derivations, actions of Lie algebras
Full Text: DOI

References:

[1] Aczél J., Daróczy Z.: On Measures of Information and Their Characterizations. Academic Press, New York (1975) · Zbl 0345.94022
[2] Ebanks B.: On the equation F(X) + M(X)G(X−1) = 0 on Kn. Linear Algebra Appl. 125, 1-17 (1989) · Zbl 0694.39006 · doi:10.1016/0024-3795(89)90030-X
[3] Ebanks B., Ng C.T.: Homogeneous tri-additive forms and derivations. Linear Algebra Appl. 435, 2731-2755 (2011) · Zbl 1230.39011 · doi:10.1016/j.laa.2011.04.040
[4] Ebanks B., Sahoo P., Sander W.: Characterizations of Information Measures. World Scientific, Singapore (1998) · Zbl 0923.94002 · doi:10.1142/3354
[5] Eisenbud D.: Commutative Algebra: with a View Toward Algebraic Geometry. Springer, New York (1999) · Zbl 0819.13001
[6] Gleason A.M.: The definition of a quadratic form. Am. Math. Monthly 73, 1049-1066 (1966) · Zbl 0144.02003 · doi:10.2307/2314635
[7] Halter-Koch F.: Characterization of field homomorphisms and derivations by functional equations. Aequat. Math. 59, 298-305 (2000) · Zbl 0962.39013 · doi:10.1007/s000100050129
[8] Halter-Koch F., Reich L.: Charakterisierung von Derivationen höherer Ordnung mittels Funktionalgleichungen. Österreich. Akad. Wiss. Math. Natur. Kl. Sitzungsber. II 207, 123-131 (1998) · Zbl 1042.39012
[9] Hartshorne R.: Algebraic Geometry. Springer, New York (1997) · Zbl 0367.14001
[10] Kannappan Pl., Kurepa S.: Some relations between additive functions-I. Aequat. Math. 4, 163-175 (1970) · Zbl 0194.17401 · doi:10.1007/BF01817757
[11] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. In:Cauchy’s Equation and Jensen’s Inequality. Birkhäuser, Basel (2009) · Zbl 1221.39041
[12] Kurepa S.: The Cauchy functional equation and scalar product in vector spaces. Glasnik Mat.-Fiz. Astronom. Ser. II Drutvo Mat. Fiz. Hrvatske 19, 23-36 (1964) · Zbl 0134.32601
[13] Kurepa S.: Remarks on the Cauchy functional equation. Publ. Inst. Math. (Beograd) (N.S.) 5(19), 85-88 (1965) · Zbl 0133.37701
[14] Maksa Gy.: The general solution of a functional equation related to the mixed theory of information. Aequat. Math. 22, 90-96 (1981) · Zbl 0462.39003 · doi:10.1007/BF02190165
[15] Ng C.T.: On a generalized fundamental equation of information. Can. J. Math. 35, 862-872 (1983) · Zbl 0522.39009 · doi:10.4153/CJM-1983-049-1
[16] Ng C.T.: On the equation F(x) + M(x)G(1/x) = 0 and homogeneous bi-additive forms. Linear Algebra Appl. 93, 255-279 (1987) · Zbl 0622.39006 · doi:10.1016/S0024-3795(87)90329-6
[17] Nishiyama A., Horinouchi S.: On a system of functional equations. Aequat. Math. 1, 1-5 (1968) · Zbl 0157.46202 · doi:10.1007/BF01817553
[18] Reich L.: Derivationen zweiter Ordnung als Lösungen von Funktionalgleichungen. Grazer Math. Ber. 337, 45-65 (1998) · Zbl 0942.39013
[19] Unger J., Reich L.: Derivationen höherer Ordnung als Lösungen von Funktionalgleichungen. Grazer Math. Ber. 336, 1-83 (1998) · Zbl 0911.39008
[20] Zariski, O., Samuel, P.: Commutative Algebra, vol. 1. Springer, New York (1986) · Zbl 0121.27901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.