×

On a generalization of strongly \(\eta\)-convex functions via fractal sets. (English) Zbl 1487.26017

Summary: The purpose of this paper is to study a generalization of strongly \(\eta\)-convex functions using the local fractional calculus developed by X.-J. Yang [Advanced local fractional calculus and its applications. New York, NY: World Science Publisher (2012)], namely generalized strongly \(\eta\)-convex function. Among other results, we obtain some Hermite-Hadamard and Fejér type inequalities for this class of functions.

MSC:

26A51 Convexity of real functions in one variable, generalizations
28A80 Fractals

References:

[1] Awan, M. U., Noor, M. A., Noor, K. I. and Safdar, F., On strongly generalized convex functions, Filomat31(18) (2017) 5783-5790, https://doi.org/10.2298/FIL1718783A. · Zbl 1499.26029
[2] Gordji, M. E., Delavar, M. R. and Sen, M. D. L., On \(\varphi \)-convex functions, J. Math. Inequal.10(1) (2016) 173-183, http://dx.doi.org/10.7153/jmi-10-15. · Zbl 1334.26022
[3] Nie, D., Rashid, S., Akdemir, A. O., Baleanu, D. and Liu, J.-B., On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications, Mathematics7(8) (2019), Article ID: 727, 12 pp., https://doi.org/10.3390/math7080727.
[4] Sun, W. and Liu, Q., Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications, Math. Methods Appl. Sci.43(9) (2020) 5776-5787, https://doi.org/10.1002/mma.6319. · Zbl 1451.26033
[5] Edgar, G. A., Integral, Probability, and Fractal Measures (Springer, New York, 1998). · Zbl 0893.28001
[6] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. (John Wiley & Sons, Hoboken, 200). · Zbl 0871.28009
[7] Mandelbrot, B. B., The Fractal Geometry of Nature (Macmillan, New York, 1983).
[8] Babakhani, A. and Daftardar-Gejji, V., On calculus of local fractional derivatives, J. Math. Anal. Appl.270(1) (2002) 66-79, https://doi.org/10.1016/S0022-247X(02)00048-3. · Zbl 1005.26002
[9] Carpinteri, A., Chiaia, B. and Cornetti, P., Static-kinematic duality and the principle of virtual work in the mechanics of fractal media, Comput. Methods Appl. Mech. Eng.191(1-2) (2001) 3-19, https://doi.org/10.1016/S0045-7825(01)00241-9. · Zbl 0991.74013
[10] Yang, X.-J., Advanced Local Fractional Calculus and Its Applications (World Science Publisher, New York, 2012).
[11] Yang, X.-J., Baleanu, D. and Srivastava, H. M., Local fractional similarity solution for the diffusion equation on Cantor sets, Appl. Math. Lett.47 (2015) 54-60, https://doi.org/10.1016/j.aml.2015.02.024. · Zbl 1388.35218
[12] Yang, X.-J., Machado, J. A. Tenreiro and Baleanu, D., Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions, Rom. Rep. Phys.69(4) (2017), Article ID: 115, 20 pp.
[13] Yang, X.-J., Machado, J. A. Tenreiro and Baleanu, D., Exact traveling-wave solution for local fractional boussinesq equational in fractal domain, Fractals25(4) (2017), Article ID: 1740006, 7 pp., https://doi.org/10.1142/S0218348X20500565.
[14] Yang, X.-J. and Machado, J. A. Tenreiro, A new fractal nonlinear Burger’s equation arising in the acoustic signals propagation, Math. Methods Appl. Sci.42(18) (2019) 7539-7544, https://doi.org/10.1002/mma.5904. · Zbl 1435.35412
[15] Yang, Y.-J. and Wang, S.-Q., A local fractional homotopy perturbation method for solving the local fractional Korteweg-de Vries equations with non-homogeneous term, Thermal Sci.23(3A) (2019) 1495-1501, https://doi.org/10.2298/TSCI180822216Y.
[16] Jassim, H. K., Analytical approximate solutions for local fractional wave equations, Math. Methods Appl. Sci.43(2) 939-947, https://doi.org/10.1002/mma.5975. · Zbl 1439.35533
[17] Sarikaya, M. Z. and Budak, H., Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc.145(4) (2017) 1527-1538, https://doi.org/10.1090/proc/13488. · Zbl 1357.26026
[18] Iftikhar, S., Erden, S., Kumam, P. and Awan, M. U., Local fractional Newton’s inequalities involving generalized harmonic convex functions, Adv. Differ. Equ.2020(185) (2020) 14 pp., https://doi.org/10.1186/s13662-020-02637-6. · Zbl 1451.26026
[19] Yang, X.-J., Expression of generalized Newton iteration method via generalized local fractional Taylor series, Adv. Comput. Sci. Appl.1(2) (2012) 89-92.
[20] Sanabria, J. and Robles, Z., On generalized \(\eta \)-convex functions and the related inequalities, Revista MATUA6(2) (2019) 50-59.
[21] Sánchez, R. and Sanabria, J., Strongly convexity on fractal sets and some inequalities, Proyecciones39(1) (2020) 01-13, https://doi.org/10.22199/issn.0717-6279-2020-01-0001. · Zbl 1454.26011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.