×

Property (\(aw\)) and Weyl’s theorem. (English) Zbl 1311.47006

In this paper, the authors study the property (\(aw\)), a variant of Weyl’s theorem introduced by M. Berkani and H. Zariouh [Mat. Vesn. 62, No. 2, 145–154 (2010; Zbl 1258.47020)], by means of the localized single valued extension property (SVEP). For a bounded linear operator defined on a Banach space, the authors establish several sufficient and necessary conditions under which property (\(aw\)) holds. The authors also relate this property with Weyl’s theorem, \(a\)-Weyl’s theorem and property (\(w\)). Finally, the authors show that, if \(T\) is \(a\)-polaroid and either \(T\) or \(T^*\) has the SVEP, then \(f(T)\) satisfies property (\(aw\)) for each \(f \in H_1(\sigma(T)).\)
Reviewer: Yufeng Lu (Dalian)

MSC:

47A10 Spectrum, resolvent
47A53 (Semi-) Fredholm operators; index theories
47B20 Subnormal operators, hyponormal operators, etc.

Citations:

Zbl 1258.47020
Full Text: DOI

References:

[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer, 2004. · Zbl 1077.47001
[2] Aiena P.: Property (w) and perturbations II. J. Math. Anal. Appl. 342, 830–837 (2008) · Zbl 1171.47010 · doi:10.1016/j.jmaa.2007.12.029
[3] Aiena P., Chō M., González M.: Polaroid type operators under quasiaffinities. J. Math. Anal. Appl. 371, 485–495 (2010) · Zbl 1204.47006 · doi:10.1016/j.jmaa.2010.05.057
[4] Aiena P., Peña P.: Variations on Weyl’s theorem. J. Math. Anal. Appl. 324, 566–579 (2006) · Zbl 1101.47001 · doi:10.1016/j.jmaa.2005.11.027
[5] Aiena P., Sanabria J. E.: On left and right poles of the resolvent. Acta Sci. Math. (Szeged) 74, 669–687 (2008) · Zbl 1210.47010
[6] Berkani M., Zariouh H.: New extended Weyl type theorems. Mat. Vesnik 62, 145–154 (2010) · Zbl 1258.47020
[7] R. E. Curto and Y. M. Han, Weyl’s theorem, a-Weyl’s theorem, and local spectral theory, J. London. Math. Soc.(2) 67 (2003), 499–509. · Zbl 1063.47001
[8] Djordjević S.V., Han Y.M.: Browder’s theorems and spectral continuity. Glasgow Math. J. 42, 479–486 (2000) · Zbl 0979.47004 · doi:10.1017/S0017089500030147
[9] Harte R.: Invertibility and Singularity for Bounded Linear Operators. Dekker, New York (1988) · Zbl 0636.47001
[10] Harte R., Lee W.Y.: Another note on Weyl’s theorem. Trans. Amer. Math. Soc. 349, 2115–2124 (1997) · Zbl 0873.47001 · doi:10.1090/S0002-9947-97-01881-3
[11] Laursen K.B., Neumann M.M.: Intoduction to Local Spectral Theory. Clarendon Press, Oxford (2000) · Zbl 0957.47004
[12] Lee W.Y., Lee S.H.: A spectral mapping theorem for the Weyl spectrum. Glasgow Math. J. 38, 61–64 (1996) · Zbl 0869.47017 · doi:10.1017/S0017089500031268
[13] Oudghiri M.: Weyl’s and Browder’s theorem for operator satisfying the SVEP. Studia Math. 163(1), 85–101 (2004) · Zbl 1064.47004 · doi:10.4064/sm163-1-5
[14] Rakočević V.: On a class of operators. Mat. Vesnik 37, 423–426 (1985) · Zbl 0596.47001
[15] Rakočević V.: Operators obeying a-Weyl’s theorem. Rev. Roumaine Math. Pures Appl. 34, 915–919 (1989) · Zbl 0686.47005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.