×

Sensitivity analysis for stochastic and deterministic models of nascent focal adhesion dynamics. (English) Zbl 1377.49048

Summary: Sensitivity Analysis (SA) is a critical part of modeling any biological system due to the inherent uncertainty in model output, as introduced by parameter values that have not been experimentally determined. SA therefore provides deeper understanding of the system by painting a picture of the extent to which certain model outputs vary in relationship to changes in model parameters. Here we explore two types of global SA for recently developed models of nascent focal adhesion formation, a key step in cellular movement. While many SA methods have been used for deterministic methods, we utilize methods for both stochastic and deterministic models, providing a more complete description of the parameters to which the focal adhesion model is most sensitive. Specific recommendations for further experimentation in the process of cellular motility are proposed in response to the SA.

MSC:

49Q12 Sensitivity analysis for optimization problems on manifolds
92B05 General biology and biomathematics
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Ananthakrishnan, R. and Ehrlicher, A., The forces behind cell movement, Int. J. Biol. Sci.3(5) (2007) 303.
[2] Blucher, A., Salas, M., Williams, N. and Callender, H. L., Mathematical modeling of integrin dynamics in initial formation of focal adhesions, Involve7(4) (2014) 509-527. · Zbl 1301.92026
[3] Charzynska, A., Nalecz, A., Rybinski, M. and Gambin, A., Sensitivity analysis of mathematical models of signalling pathways, Biotechnologia93(3) (2012) 291-308.
[4] Cluzel, C., Saltel, F., Lussi, J., Paulhe, F., Imhof, B. A. and Wehrle-Haller, B., The mechanisms and dynamics of \(\alpha\) v \(\beta 3\) integrin clustering in living cells, J. Cell Biol.171(2) (2005) 383-392.
[5] Degasperi, A. and Gilmore, S., Sensitivity analysis of stochastic models of bistable biochemical reactions, in Formal Methods for Computational Systems Biology (Springer, 2008), pp. 1-20.
[6] P. A. Ekström, Eikos — A Simulation Toolbox for Sensitivity Analysis, M.S. thesis (Uppsala University, Sweden, 2005).
[7] Fletcher, D. A. and Theriot, J. A., An introduction to cell motility for the physical scientist, Phys. Biol.1(1) (2004) T1-T10.
[8] Giancotti, F. G. and Ruoslahti, E., Integrin signaling, Science285(5430) (1999) 1028-1033.
[9] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem.81(25) (1977) 2340-2361.
[10] Hamby, D. M., A comparison of sensitivity analysis techniques, Health Phys.68(2) (1995) 195-204.
[11] Hynes, R. O., Integrins: Versatility, modulation, and signaling in cell adhesion, Cell69(1) (1992) 11-25.
[12] W. Just, A brief review of basic probability theory (2015), http://www.ohio.edu/people/just/IONTW/Probability.pdf.
[13] Kim, D. and Wirtz, D., Focal adhesion size uniquely predicts cell migration, FASEB J.27(4) (2013) 1351-1361.
[14] Lauffenburger, D. A. and Horwitz, A. F., Cell migration: A physically integrated molecular process, Cell84(3) (1996) 359-369.
[15] Lele, T. P., Thodeti, C. K., Pendse, J. and Ingber, D. E., Investigating complexity of protein-protein interactions in focal adhesions, Biochem. Biophys. Res. Commun.369(3) (2008) 929-934.
[16] Marino, S., Hogue, I. B., Ray, C. J. and Kirschner, D. E., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol.254(1) (2008) 178-196. · Zbl 1400.92013
[17] McRae, G. J., Tilden, J. W. and Seinfeld, J. H., Global sensitivity analysis, a computational implementation of the Fourier amplitude sensitivity test (FAST), Comput. Chem. Engrg.6(1) (1982) 15-25.
[18] Mehrayin, M., Farmanzad, F., Mozafari, M., Vashaee, D. and Tayebi, L., A critical stress model for cell motility, Theor. Biol. Med. Model.9(1) (2012) 49.
[19] Miyamoto, S., Teramoto, H., Coso, O. A., Gutkind, J. S., Burbelo, P. D., Akiyama, S. K. and Yamada, K. M., Integrin function: Molecular hierarchies of cytoskeletal and signaling molecules, J. Cell Biol.131(3) (1995) 791-805.
[20] Morris, M. D., Factorial sampling plans for preliminary computational experiments, Technometrics33(2) (1991) 161-174.
[21] Razavi, S. and Gupta, H. V., What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in earth and environmental systems models, Water Resour. Res.51(5) (2015) 3070-3092.
[22] Saltelli, A. and Funtowicz, S., When all models are wrong, Issues. Sci. Technol.30(2) (2014) 79-85.
[23] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M. and Tarantola, S., Global Sensitivity Analysis: The Primer (John Wiley and Sons, Chichester, 2008). · Zbl 1161.00304
[24] Saltelli, A., Tarantola, S. and Campolongo, F., Sensitivity analysis as an ingredient of modeling, Statist. Sci.15(4) (2000) 377-395.
[25] Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M., Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models (John Wiley and Sons, Chichester, 2004). · Zbl 1049.62112
[26] Small, J. V., Stradal, T., Vignal, E. and Rottner, K., The lamellipodium: Where motility begins, Trends Cell Biol.12(3) (2002) 112-120.
[27] Soll, D. R., The use of computers in understanding how animal cells crawl, Int. Rev. Cytol.163 (1995) 43-104.
[28] Tadokoro, S., Shattil, S. J., Eto, K., Tai, V., Liddington, R. C., de Pereda, J. M., Ginsberg, M. H. and Calderwood, D. A., Talin binding to integrin ß tails: A final common step in integrin activation, Science302(5642) (2003) 103-106.
[29] Tarantola, S., Gatelli, D. and Mara, T. A., Random balance designs for the estimation of first-order global sensitivity indices, Reliab. Engrg. Syst. Safety91(6) (2006) 717-727.
[30] Wehrle-Haller, B., The role of integrins in cell migration, in Integrins in Development, ed. Danen, E. (Landes Bioscience, Georgetown, Texas, 2005), pp. 25-48.
[31] Yilmaz, M. and Christofori, G., Mechanisms of motility in metasizing cells, Molec. Cancer Res.8(5) (2010) 629-642.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.