×

Explicit \(p\)-harmonic functions on the real Grassmannians. (English) Zbl 1528.53054

A proper \(p\)-harmonic function on a Riemannian manifold \((M,g)\) is a complex-valued function \(\varphi\colon M\to \mathbb{C}\) satisfying \(\tau^p(\varphi)=0\) and \(\tau^{p-1}(\varphi)\ne 0\), where \(\tau\) is the Laplace-Beltrami operator on \((M,g)\). The main result of the paper is an explicit construction of proper \(p\)-harmonic functions on real Grassmanians \(G_m(\mathbb{R}^{n+m})=\mathrm{SO}(n+m)/\mathrm{SO}(n)\times \mathrm{SO}(m)\).
The construction is based on the following sequence of steps.
(1) If \(\varphi\) is a complex-valued function on \(M\) satisfying \(\tau(\varphi)=\lambda\varphi\) and \(g(\nabla \varphi,\nabla \varphi)=\mu\varphi\) for \(\lambda\ne 0\), \(\mu\ne 0\), then the function \(\Phi_p=(c_1 \varphi^{1-\lambda/\mu}+c_2)\log(\varphi)^{p-1}\) is proper \(p\)-harmonic for any non-vanishing complex coefficients \(c_1,c_2\).
(2) For any \(1\le j,\alpha\le n+m\) the functions \(\hat\varphi_{j\alpha}(X)=\sum_{t=1}^mx_{jt}x_{t\alpha}\) on \(\mathrm{SO}(n+m)\) are \(\mathrm{SO}(n)\times \mathrm{SO}(m)\)-invariant and thus induce functions on the Grassmanian \(G_m(\mathbb{R}^{n+m})\).
(3) For any complex symmetric \((n+m)\times(n+m)\) matrix \(A\), such that \(\operatorname{rank} A=1\), \(\operatorname{tr} A =0\), the \(\mathrm{SO}(n)\times \mathrm{SO}(m)\)-invariant fucntion \(\hat\Phi_A(X) = \sum_{j,\alpha=1}^{n+m} a_{j\alpha}\hat\varphi_{j\alpha}(X)\) on \(\mathrm{SO}(n+m)\) induces a function \(\Phi_A\) on \(G_m(\mathbb{R}^{n+m})\) satisfying condition (1) with \(\lambda=-(n+m)\), \(\mu=-2\).

MSC:

53C35 Differential geometry of symmetric spaces
53C43 Differential geometric aspects of harmonic maps
53C30 Differential geometry of homogeneous manifolds
58E20 Harmonic maps, etc.
42B35 Function spaces arising in harmonic analysis
14M15 Grassmannians, Schubert varieties, flag manifolds

References:

[1] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory. Springer 2001. MR1805196 Zbl 0959.31001 · Zbl 0959.31001
[2] P. Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds, volume 29 of London Mathematical Society Monographs. New Series. Oxford Univ. Press 2003. MR2044031 Zbl 1055.53049 · Zbl 1055.53049
[3] S. Gudmundsson, The Bibliography of Harmonic Morphisms. www.matematik.lu.se/matematiklu/personal/sigma/harmonic/bibliography.html.
[4] S. Gudmundsson, The Bibliography of p-Harmonic Functions. www.matematik.lu.se/matematiklu/personal/sigma/harmonic/p-bibliography.html.
[5] S. Gudmundsson, S. Montaldo, A. Ratto, Biharmonic functions on the classical compact simple Lie groups. J. Geom. Anal. 28 (2018), 1525-1547. MR3790510 Zbl 1414.58011 · Zbl 1414.58011
[6] S. Gudmundsson, A. Sakovich, Harmonic morphisms from the classical compact semisimple Lie groups. Ann. Global Anal. Geom. 33 (2008), 343-356. MR2395191 Zbl 1176.58011 · Zbl 1176.58011
[7] S. Gudmundsson, A. Siffert, New biharmonic functions on the compact Lie groups SO(n), SU(n), Sp(n). J. Geom. Anal. 31 (2021), 250-281. MR4203645 Zbl 1460.31022 · Zbl 1460.31022
[8] S. Gudmundsson, A. Siffert, M. Sobak, Explicit proper p-harmonic functions on the Riemannian symmetric spaces SU(n)/SO(n), Sp(n)/U(n), SO(2n)/U(n), SU(2n)/Sp(n). J. Geom. Anal. 32 (2022), Paper No. 147, 16 pages. MR4382667 Zbl 1486.31020 · Zbl 1486.31020
[9] S. Gudmundsson, M. Sobak, Proper r-harmonic functions from Riemannian manifolds. Ann. Global Anal. Geom. 57 (2020), 217-223. MR4057458 Zbl 1439.31008 · Zbl 1439.31008
[10] S. Gudmundsson, M. Svensson, Harmonic morphisms from the Grassmannians and their non-compact duals. Ann. Global Anal. Geom. 30 (2006), 313-333. MR2265318 Zbl 1103.58007 · Zbl 1103.58007
[11] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, volume 80 of Pure and Applied Mathematics. Academic Press 1978. MR514561 Zbl 0451.53038 · Zbl 0451.53038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.