×

The conformal flow of metrics and the general Penrose inequality. (English) Zbl 1440.83003

Summary: The conformal flow of metrics has been used to successfully establish a special case of the Penrose inequality, which yields a lower bound for the total mass of a spacetime in terms of horizon area. Here we show how to adapt the conformal flow of metrics, so that it may be applied to the Penrose inequality for general initial data sets of the Einstein equations. The Penrose conjecture without the assumption of time symmetry is then reduced to solving a system of PDE with desirable properties.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
53E30 Flows related to complex manifolds (e.g., Kähler-Ricci flows, Chern-Ricci flows)

References:

[1] Galloway, G. J., Rigidity of marginally trapped surfaces and the topology of black holes, Communications in Analysis and Geometry, 16, 1, 217-229, (2008) · Zbl 1147.83005 · doi:10.4310/CAG.2008.v16.n1.a7
[2] Galloway, G. J.; Schoen, R., A generalization of Hawking’s black hole topology theorem to higher dimensions, Communications in Mathematical Physics, 266, 2, 571-576, (2006) · Zbl 1190.53070 · doi:10.1007/s00220-006-0019-z
[3] Penrose, R., Naked singularities, Annals of the New York Academy of Sciences, 224, 1, 125-134, (1973) · Zbl 0925.53023 · doi:10.1111/j.1749-6632.1973.tb41447.x
[4] Mars, M., Present status of the Penrose inequality, Classical and Quantum Gravity, 26, 19, (2009) · Zbl 1178.83002 · doi:10.1088/0264-9381/26/19/193001
[5] Huisken, G.; Ilmanen, T., The inverse mean curvature flow and the Riemannian Penrose inequality, Journal of Differential Geometry, 59, 3, 353-437, (2001) · Zbl 1055.53052 · doi:10.4310/jdg/1090349447
[6] Bray, H. L., Proof of the Riemannian Penrose inequality using the positive mass theorem, Journal of Differential Geometry, 59, 2, 177-267, (2001) · Zbl 1039.53034 · doi:10.4310/jdg/1090349428
[7] Bray, H. L.; Khuri, M. A., A Jang equation approach to the Penrose inequality, Discrete and Continuous Dynamical Systems - Series A, 27, 2, 741-766, (2010) · Zbl 1193.53169 · doi:10.3934/dcds.2010.27.741
[8] Bray, H. L.; Khuri, M. A., P.D.E.’s which imply the Penrose conjecture, Asian Journal of Mathematics, 15, 4, 557-610, (2011) · Zbl 1244.83016 · doi:10.4310/AJM.2011.v15.n4.a5
[9] Andersson, L.; Eichmair, M.; Metzger, J., Jang’s equation and its applications to marginally trapped surfaces, Complex Analysis and Dynamical Systems IV. Part 2. Complex Analysis and Dynamical Systems IV. Part 2, Contemporary Mathematics, 554, 13-45, (2011), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 1235.53019 · doi:10.1090/conm/554/10958
[10] Schoen, R.; Yau, S. T., Proof of the positive mass theorem II, Communications in Mathematical Physics, 79, 2, 231-260, (1981) · Zbl 0494.53028 · doi:10.1007/BF01942062
[11] Han, Q.; Khuri, M., Existence and blow-up behavior for solutions of the generalized Jang equation, Communications in Partial Differential Equations, 38, 12, 2199-2237, (2013) · Zbl 1319.35261 · doi:10.1080/03605302.2013.837919
[12] Cha, Y. S.; Khuri, M.; Sakovich, A., Reduction arguments for geometric inequalities associated with asymptotically hyperboloidal slices, Classical and Quantum Gravity, 33, 3, (2016) · Zbl 1332.83013 · doi:10.1088/0264-9381/33/3/035009
[13] Disconzi, M. M.; Khuri, M. A., On the Penrose inequality for charged black holes, Classical and Quantum Gravity, 29, 24, (2012) · Zbl 1260.83034 · doi:10.1088/0264-9381/29/24/245019
[14] Khuri, M. A., A Penrose-like inequality for general initial data sets, Communications in Mathematical Physics, 290, 2, 779-788, (2009) · Zbl 1182.53063 · doi:10.1007/s00220-009-0830-4
[15] Khuri, M. A., A Penrose-like inequality with charge, General Relativity and Gravitation, 45, 11, 2341-2361, (2013) · Zbl 1278.83018 · doi:10.1007/s10714-013-1588-8
[16] Cha, Y. S.; Khuri, M. A., Deformations of axially symmetric initial data and the mass-angular momentum inequality, Annales Henri PoincarPoincaré, 16, 3, 841-896, (2015) · Zbl 1311.83021 · doi:10.1007/s00023-014-0332-6
[17] Cha, Y. S.; Khuri, M. A., Deformations of charged axially symmetric initial data and the mass-angular momentum-charge inequality, Annales Henri PoincarPoincaré, 16, 12, 2881-2918, (2015) · Zbl 1330.83017 · doi:10.1007/s00023-014-0378-5
[18] Khuri, M.; Weinstein, G.; Yamada, S., Extensions of the charged Riemannian Penrose inequality, Classical and Quantum Gravity, 32, 3, (2015) · Zbl 1312.83024 · doi:10.1088/0264-9381/32/3/035019
[19] Khuri, M.; Weinstein, G.; Yamada, S., Proof of the Riemannian Penrose inequality with charge for multiple black holes, Journal of Differential Geometry, 106, 3, 451-498, (2017) · Zbl 1386.83039 · doi:10.4310/jdg/1500084023
[20] Bray, H. L.; Lee, D. A., On the Riemannian Penrose inequality in dimensions less than eight, Duke Mathematical Journal, 148, 1, 81-106, (2009) · Zbl 1168.53016 · doi:10.1215/00127094-2009-020
[21] Bartnik, R. A.; Chruściel, P. T., Boundary value problems for Dirac-type equations, Journal für die Reine und Angewandte Mathematik, 579, 13-73, (2005) · Zbl 1174.58305 · doi:10.1515/crll.2005.2005.579.13
[22] Lawson, H. B.; Michelsohn, M.-L., Spin Geometry, (1989), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 0688.57001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.