×

Cylinders in rational surfaces. (English. Russian original) Zbl 1464.14039

Sb. Math. 212, No. 3, 399-415 (2021); translation from Mat. Sb. 212, No. 3, 139-156 (2021).
In the paper under review, the author studies the so-called cylinders in rational surfaces. Let \(S\) be a smooth rational surface, then a cylinder in \(S\) is an open subset \(U \subset S\) such that \(U \cong \mathbb{C}^{1} \times Z\) for an affine curve \(Z\). It seems to be very difficult to describe all cylinders in a given surface \(X\), so one can consider a similar problem for polarized surfaces. Fix an ample \(\mathbb{Q}\)-divisor \(A\) on the surface \(S\). An \(A\)-polar cylinder in \(S\) is a Zariski open subset \(U\) in \(S\) such that
(A) \(U \cong \mathbb{C}^{1} \times Z\) for some affine curve \(Z\), i.e., \(U\) is a cylinder in \(S\);
(B) There is an effective \(\mathbb{Q}\)-divisor \(D\) on \(S\) such that \(D \sim_{\mathbb{Q}} A\) and \(U = S \setminus \mathrm{Supp}(D)\). Define \[\mu_{A} :=\{ \lambda \in \mathbb{Q}_{>0} \, : \, \text{ the } \,\, \mathbb{Q}\text{-divisor}\,\, K_{S} + \lambda \cdot A \,\, \text{ is } \, \, \text{pseudoeffective}\}.\] Let \(\triangle_{A}\) be the smallest extremal face of the Mori cone \(\overline{\mathrm{NE}(S)}\) that contains \(K_{S} + \mu_{A} \cdot A\). Denote the dimension of the face \(\triangle_{A}\) by \(r_{A}\). Observe that \(r_{A} = 0\) if and only if \(S\) is a smooth del Pezzo surface and \(\mu_{A} \cdot A \sim_{\mathbb{Q}} -K_{S}\). The number \(r_{A}\) is known as the Fujita rank of the divisor \(A\).
During a conference in 2016, Ciliberto asked the following interesting question.
Question. Let \(S\) be a rational surface that is obtained from \(\mathbb{P}^{2}\) by blowing up points in general position, and let \(A\) be an ample \(\mathbb{Q}\)-divisor on \(S\) such that \(r_{A} + K_{S}^{2} \leq 3\). Is it true that \(S\) does not contain \(A\)-polar cylinders?
In the present paper, the author shows a nice result as below.
Main Theorem. Let \(S\) be a smooth rational surface that satisfies the following generality condition:
\((*)\) the self-intersection of every smooth rational curve in \(S\) is at least \(-1\).
Let \(A\) be an ample \(\mathbb{Q}\)-divisor on \(S\) and let \(r_{A}\) be the Fujita rank of the divisor \(A\). Suppose that \(r_{A} + K_{S}^{2} \leq 3\). Then \(S\) does not contain \(A\)-polar cylinders.
Corollary. Let \(S\) be a smooth rational surface that satisfies \((*)\), \(A\) an ample \(\mathbb{Z}\)-divisor on \(S\), and let \(r_{A}\) be the Fujita rank of the divisor \(A\). Define \[V =\mathrm{Spec}\bigg( \bigoplus_{n\geq 0} H^{0}(S, \mathcal{O}_{S}(nA))\bigg).\] Suppose that \(r_{A} + K_{S}^{2} \leq 3\). Then \(V\) does not admit an effective action of the additive group \(\mathbb{C}_{+}\).

MSC:

14J26 Rational and ruled surfaces

References:

[1] Cheltsov, I., Del Pezzo surfaces and local inequalities, Automorphisms in birational and affine geometry, 79, 83-101 (2014) · Zbl 1327.14174 · doi:10.1007/978-3-319-05681-4_5
[2] Cheltsov, I.; Park, Jihun; Won, Joonyeong, Affine cones over smooth cubic surfaces, J. Eur. Math. Soc. (JEMS), 18, 7, 1537-1564 (2016) · Zbl 1386.14068 · doi:10.4171/JEMS/622
[3] Cheltsov, I.; Park, Jihun; Won, Joonyeong, Cylinders in del Pezzo surfaces, Int. Math. Res. Not. IMRN, 2017, 4, 1179-1230 (2017) · Zbl 1405.14089 · doi:10.1093/imrn/rnw063
[4] Ciliberto, C.; Harbourne, B.; Miranda, R.; Roé, J., Variations on Nagata’s conjecture, A celebration of algebraic geometry, 18, 185-203 (2013) · Zbl 1317.14017
[5] Fernex, T. de, Negative curves on very general blow-ups of \(\mathbb{P}^2 \), Projective varieties with unexpected properties, 199-207 (2005) · Zbl 1121.14006
[6] Lehmann, B.; Tanimoto, S.; Tschinkel, Yu., Balanced line bundles on Fano varieties, J. Reine Angew. Math., 743, 91-131 (2018) · Zbl 1397.14029 · doi:10.1515/crelle-2015-0084
[7] Kishimoto, T.; Prokhorov, Yu.; Zaidenberg, M., Group actions on affine cones, Affine algebraic geometry, 54, 123-163 (2011) · Zbl 1257.14039 · doi:10.1090/crmp/054/08
[8] Kishimoto, T.; Prokhorov, Yu.; Zaidenberg, M., \( \mathbb{G}_a\)-actions on affine cones, Transform. Groups, 18, 4, 1137-1153 (2013) · Zbl 1297.14061 · doi:10.1007/s00031-013-9246-5
[9] Kishimoto, T.; Prokhorov, Yu.; Zaidenberg, M., Unipotent group actions on del Pezzo cones, Algebraic Geometry, 1, 1, 46-56 (2014) · Zbl 1418.14016 · doi:10.14231/AG-2014-003
[10] Kollár, J.; Mori, S., Cambridge Tracts in Math., 134 (1998), Cambridge Univ. Press: Cambridge Univ. Press, Cambridge · Zbl 0926.14003 · doi:10.1017/CBO9780511662560
[11] Marquand, L.; Won, Joonyeong, Cylinders in rational surfaces, Eur. J. Math., 4, 3, 1161-1196 (2018) · Zbl 1440.14175 · doi:10.1007/s40879-018-0229-x
[12] Prokhorov, Yu. G., On the Zariski decomposition problem, Proc. Steklov Inst. Math., 240, 43-72 (2003) · Zbl 1092.14024
[13] Sakai, F., On polarized normal surfaces, manuscripta math., 59, 1, 109-127 (1987) · Zbl 0635.14016 · doi:10.1007/BF01171266
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.