×

Existence of nontrivial logarithmic co-Higgs structure on curves. (English) Zbl 1441.14113

Let \(X\) be a smooth projective variety of dimension \(n\ge 1\) and let \(\mathcal{D}\) be an arrangement of pairwise distinct smooth and irreducible divisors on \(X\) with simple normal crossings. A \(\mathcal{D}\)-logarithmic co-Higgs sheaf on \(X\) is defined as a pair \(\left(\mathcal{E},\Phi \right)\), where \(\mathcal{E}\) is a torsion-free coherent sheaf on \(X\) and \(\Phi :\mathcal{E}\to\mathcal{E}\otimes\mathcal{T}_{\mathcal{D}}\) is a morphism with \(\Phi \wedge \Phi =0\); \(\mathcal{T}_{\mathcal{D}}\) here denotes the logarithmic tangent bundle on \(X\) associated to \(\mathcal{D}\) assuming negative degree \(\deg\mathcal{T}_{\mathcal{D}}\).
In the first part of this article the authors primarily investigate a numeric criterion on the rank and degree of the successive quotients in the Harder-Narasimhan filtration of a torsion-free coherent sheaf \(\mathcal{E}\) in order to admit a non-trivial co-Higgs field \(\Phi \). The existence of such a co-Higgs field is induced by explicit usage of positive elementary transformations and the affirmative answer to the Lange conjecture, which in turn provides the existence of an exact sequence of stable vector bundles on \(X\) with prescribed ranks and degrees.
The second part of the article deals with extending the notion of the Segre invariant to the setting of logarithmic co-Higgs structures. Namely, for \(\left(\mathcal{E},\Phi \right)\) a logarithlic co-Higgs sheaf with \(r:=\text{rk}\mathcal{E}\ge 2\) and for \(\mathcal{S}\left( k,\mathcal{E},\Phi \right)\) the set of all subsheaves \(\mathcal{A}\subset\mathcal{E}\) of fixed rank \(k\in \left\{ 1,\ldots ,r-1 \right\}\) such that \(\Phi \left(\mathcal{A}\right)\subseteq\mathcal{A}\otimes \mathcal{T}_{\mathcal{D}}\), the \(k\)-th Segre invariant is defined by \[ s_k\left(\mathcal{E},\Phi \right):=k\deg\mathcal{E}-\max_{\mathcal{A}\in\mathcal{S}\left(k,\mathcal{E},\Phi \right)}r\deg \mathcal{A}. \] It is shown that this invariant is well-defined and some of its basic properties are being studied.

MSC:

14H60 Vector bundles on curves and their moduli
14D20 Algebraic moduli problems, moduli of vector bundles
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
53D18 Generalized geometries (à la Hitchin)

References:

[1] Atiyah, M. F., Vector bundles on an elliptic curve, Proc. London Math. Soc.7 (1959) 414-452. · Zbl 0084.17305
[2] Ballico, E. and Huh, S., 2-nilpotent co-Higgs structures, Manuscripta Math.159(1-2) (2019) 39-56. · Zbl 1455.14084
[3] Ballico, E. and Huh, S., Logarithmic co-Higgs bundles, Mediterr. J. Math.16(1) (2019) Article 9, 23 pp. · Zbl 1409.14076
[4] Ballico, E. and Russo, B., Maps between stable vector bundles on a smooth curve, Bull. Polish Acad. Sci. Math.50(4) (2002) 433-446. · Zbl 1085.14507
[5] Bănică, C., Sur les Ext-globaux dans une déformation, Compos. Math.44(1-3) (1981) 17-27. · Zbl 0492.32023
[6] Bhosle, U. N., Maximal subsheaves of torsion-free sheaves on nodal curves, J. London Math. Soc.74(2) (2006) 59-74. · Zbl 1101.14048
[7] Bradlow, S. B., García-Prada, O. and Gothen, P., Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann.328 (2004) 299-351. · Zbl 1041.32008
[8] Brambila Paz, L. and Lange, H., A stratification of the moduli space of vector bundles on curves Dedicated to Martin Kneser on the occasion of his 70th birthday, J. Reine Angew. Math.494 (1998) 173-187. · Zbl 0919.14016
[9] A. V. Colmenares, Moduli spaces of semistable rank-2 co-Higgs bundles over \(\Bbb P^1 \times \Bbb P^1\), preprint (2016), arXiv:1604.01372 [math.AG]. · Zbl 1404.14017
[10] Debarre, O., Varieties with ample cotangent bundle, Compos. Math.141(6) (2005) 1445-1459. · Zbl 1086.14038
[11] O. Debarre, Corrigendum: Varieties with ample cotangent bundle (Compos. Math.141 (2005) 1445-1459), Compos. Math.149(3) (2013) 505-506. · Zbl 1086.14038
[12] Dolgachev, I., Logarithmic sheaves attached to arrangements of hyperplanes, J. Math. Kyoto Univ.47(1) (2007) 35-64. · Zbl 1156.14015
[13] Gómez, T., Algebraic stacks, Proc. Indian Acad. Sci. Math. Sci.111(1) (2001) 1-31, arXiv:9911199. · Zbl 0982.14005
[14] Gualtieri, M., Generalized complex geometry, Ann. Math.174(1) (2011) 75-123. · Zbl 1235.32020
[15] Hartshorne, R., Stable reflexive sheaves, Math. Ann.254(2) (1980) 121-176. · Zbl 0431.14004
[16] A. Hirschowitz, Problèmes de Brill-Noether en rang supèrieur, unpublished preprint, Nice, 1986; available in pdf in his webpages.
[17] Hitchin, N., Generalized Calabi-Yau manifolds, Q. J. Math.54(3) (2003) 281-308. · Zbl 1076.32019
[18] Lange, H., Zur Klassifikation von Regelmannigfaltigkeiten, Math. Ann.262(4) (1983) 447-459. · Zbl 0492.14003
[19] Lange, H., Universal families of extensions, J. Algebra83(1) (1983) 101-112. · Zbl 0518.14008
[20] Lange, H., Some geometrical aspects of vector bundles on curves, in Topics in Algebraic Geometry (Guanajuato, 1989), , Vol. 5 (Soc. Mat. Mexicana, México, 1992), pp. 53-74. · Zbl 0899.14012
[21] Maruyama, M., The theorem of Grauert-Mülich-Spindler, Math. Ann.255(3) (1981) 317-333. · Zbl 0438.14015
[22] Mukai, S. and Sakai, F., Maximal subbundles of vector bundles on a curve, Manuscripta Math.2 (1985) 251-256. · Zbl 0572.14008
[23] Nitsure, N., Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3)62(2) (1991) 275-300. · Zbl 0733.14005
[24] Oxbury, W., Varieties of maximal line subbundles, Math. Proc. Camb. Phil. Soc.129 (2000) 9-18. · Zbl 0973.14015
[25] Peternell, T. and Wiśniewski, J. A., On stability of tangent bundles of Fano manifolds with \(b_2 = 1\), J. Alg. Geom.4 (1995) 363-384. · Zbl 0837.14033
[26] Rayan, S., Constructing co-Higgs bundles on \(\mathbb{C} \Bbb P^2\), Q. J. Math.65(4) (2014) 1437-1460. · Zbl 1317.14027
[27] Russo, B. and Teixidor I Bigas, M., On a conjecture of Lange, J. Alg. Geom.8(3) (1999) 483-496. · Zbl 0942.14013
[28] Simpson, C., Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc.1(4) (1988) 867-918. · Zbl 0669.58008
[29] Teixidor I Bigas, M., Subbundles of maximal degree, Math. Proc. Camb. Phil. Soc.136 (2004) 541-545. · Zbl 1062.14043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.