×

Frobenius-Perron theory for projective schemes. (English) Zbl 1536.16006

The paper under review is a sequel of J. Chen et al. [Algebra Number Theory 13, No. 9, 2005–2055 (2019; Zbl 1490.16015)] by the same authors. In the present paper it is recalled the rather technical definition of the Frobenius-Perron dimension of an endofunctor \(\sigma:{\mathcal T}\to{\mathcal T}\), where \({\mathcal T}\) is a hom-finite \({\mathbb K}\)-category (\({\mathbb K}\) is a base field). If \({\mathcal T}\) is triangulated, e.g., it is the bounded derived category of coherent sheaves over a projective scheme \(\mathrm{D}^b(\mathrm{coh}\mathbb{X})\), then the endofunctor \(\sigma\) is actually the shift functor of \(\mathcal T\), and we denote by \(\mathrm{fp}(\mathcal{T})\) the Frobenius-Perron dimension.
The first main result says that is \(\mathbb X\) is a weighted projective line that is either domestic or tubular, then \(\mathrm{fp}\ \mathrm{D}^b(\mathrm{coh}{\mathbb X})=1\). Next there are introduced Frobenius-Perron versions for the Calabi-Yau dimension \(\mathrm{fpcy}({\mathcal T})\), respectively for the Kodaira dimension \(\mathrm{fp}\kappa({\mathcal T})\) for a suitable triangulated category \({\mathcal T}\). It is shown that they coincide with the classical invariants for \({\mathcal T}=\mathrm{D}^b(\mathrm{coh}{\mathbb X})\), where \(\mathbb X\) is a smooth projective scheme. The paper contains a number of examples where are computed the above defined invariants, e.g., \(\mathrm{fp}({\mathcal T})\), for \(\mathcal T\) being the bounded derived category of finite dimensional representations of some quivers, or \(\mathrm{fpcy}\ \mathrm{D}^b(\mathrm{coh}{\mathbb X})\), for \(\mathbb X\) being the noncommutative projective scheme associated to a noetherian connected graded Artin-Schelter Gorenstein algebra of injective dimension \(\geq2\).

MSC:

16E35 Derived categories and associative algebras
18G80 Derived categories, triangulated categories
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
16E10 Homological dimension in associative algebras
16B50 Category-theoretic methods and results in associative algebras (except as in 16D90)

Citations:

Zbl 1490.16015

References:

[1] Artin, Michael, Graded algebras of global dimension \(3\), Adv. in Math., 171-216 (1987) · Zbl 0633.16001 · doi:10.1016/0001-8708(87)90034-X
[2] Artin, M., Noncommutative projective schemes, Adv. Math., 228-287 (1994) · Zbl 0833.14002 · doi:10.1006/aima.1994.1087
[3] I. Assem, D. Simson and A. Skowro\' nski, Elements of the representation theory of associative algebras, Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge, 2006. · Zbl 1092.16001
[4] Bern\v{s}te\u{\i }n, I. N., Coxeter functors, and Gabriel’s theorem, Uspehi Mat. Nauk, 19-33 (1973) · Zbl 0269.08001
[5] Bondal, Alexei, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math., 327-344 (2001) · Zbl 0994.18007 · doi:10.1023/A:1002470302976
[6] Bondal, A., Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., 1-36, 258 (2003) · Zbl 1135.18302 · doi:10.17323/1609-4514-2003-3-1-1-36
[7] Br\"{u}ning, Kristian, Interactions between homotopy theory and algebra. Coherent sheaves on an elliptic curve, Contemp. Math., 297-315 (2007), Amer. Math. Soc., Providence, RI · Zbl 1127.14306 · doi:10.1090/conm/436/08414
[8] Chen, Jianmin, Frobenius-Perron theory of endofunctors, Algebra Number Theory, 2005-2055 (2019) · Zbl 1490.16015 · doi:10.2140/ant.2019.13.2005
[9] Etingof, Pavel, Tensor categories, Mathematical Surveys and Monographs, xvi+343 pp. (2015), American Mathematical Society, Providence, RI · Zbl 1365.18001 · doi:10.1090/surv/205
[10] Etingof, Pavel, Classification of fusion categories of dimension \(pq\), Int. Math. Res. Not., 3041-3056 (2004) · Zbl 1063.18005 · doi:10.1155/S1073792804131206
[11] Etingof, Pavel, On fusion categories, Ann. of Math. (2), 581-642 (2005) · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581
[12] Geigle, Werner, Singularities, representation of algebras, and vector bundles. A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Lecture Notes in Math., 265-297 (1985), Springer, Berlin · Zbl 0651.14006 · doi:10.1007/BFb0078849
[13] Happel, Dieter, On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 339-389 (1987) · Zbl 0626.16008 · doi:10.1007/BF02564452
[14] Hille, Lutz, Exceptional sequences of invertible sheaves on rational surfaces, Compos. Math., 1230-1280 (2011) · Zbl 1237.14043 · doi:10.1112/S0010437X10005208
[15] Keller, Bernhard, On triangulated orbit categories, Doc. Math., 551-581 (2005) · Zbl 1086.18006
[16] Keller, Bernhard, Handbook of tilting theory. Derived categories and tilting, London Math. Soc. Lecture Note Ser., 49-104 (2007), Cambridge Univ. Press, Cambridge · Zbl 1106.16300 · doi:10.1017/CBO9780511735134.005
[17] Kussin, Dirk, Triangle singularities, ADE-chains, and weighted projective lines, Adv. Math., 194-251 (2013) · Zbl 1273.14075 · doi:10.1016/j.aim.2013.01.006
[18] Kuznetsov, Alexander, Calabi-Yau and fractional Calabi-Yau categories, J. Reine Angew. Math., 239-267 (2019) · Zbl 1440.14092 · doi:10.1515/crelle-2017-0004
[19] Lazarsfeld, Robert, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], xviii+387 pp. (2004), Springer-Verlag, Berlin · Zbl 1093.14501 · doi:10.1007/978-3-642-18808-4
[20] Lenzing, Helmut, Representations of algebras and related topics. Weighted projective lines and applications, EMS Ser. Congr. Rep., 153-187 (2011), Eur. Math. Soc., Z\"{u}rich · Zbl 1316.14037 · doi:10.4171/101-1/5
[21] Lenzing, Helmut, Representations of algebras. Sheaves on a weighted projective line of genus one, and representations of a tubular algebra [ MR1206953 (94d:16019)], CMS Conf. Proc., 313-337 (1992), Amer. Math. Soc., Providence, RI · Zbl 0809.16012
[22] Leszczy\'{n}ski, Zbigniew, Tame generalized canonical algebras, J. Algebra, 412-433 (2004) · Zbl 1063.16023 · doi:10.1016/S0021-8693(03)00369-7
[23] McConnell, J. C., Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), xvi+596 pp. (1987), John Wiley & Sons, Ltd., Chichester · Zbl 0644.16008
[24] Minamoto, Hiroyuki, A noncommutative version of Beilinson’s theorem, J. Algebra, 238-252 (2008) · Zbl 1165.14009 · doi:10.1016/j.jalgebra.2008.03.014
[25] Neeman, Amnon, Triangulated categories, Annals of Mathematics Studies, viii+449 pp. (2001), Princeton University Press, Princeton, NJ · Zbl 0974.18008 · doi:10.1515/9781400837212
[26] Nikshych, Dmitri, Semisimple weak Hopf algebras, J. Algebra, 639-667 (2004) · Zbl 1066.16042 · doi:10.1016/j.jalgebra.2003.09.025
[27] Piontkovski, Dmitri, Coherent algebras and noncommutative projective lines, J. Algebra, 3280-3290 (2008) · Zbl 1193.16015 · doi:10.1016/j.jalgebra.2007.07.010
[28] Ringel, Claus Michael, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, xiii+376 pp. (1984), Springer-Verlag, Berlin · Zbl 0546.16013 · doi:10.1007/BFb0072870
[29] Sakai, Fumio, Anti-Kodaira dimension of ruled surfaces, Sci. Rep. Saitama Univ. Ser. A, 1-7 (1982) · Zbl 0496.14022
[30] Schiffmann, Olivier, Geometric methods in representation theory. II. Lectures on Hall algebras, S\'{e}min. Congr., 1-141 (2012), Soc. Math. France, Paris · Zbl 1309.18012
[31] Simson, Daniel, Elements of the representation theory of associative algebras. Vol. 2, London Mathematical Society Student Texts, xii+308 pp. (2007), Cambridge University Press, Cambridge · Zbl 1129.16001
[32] Sisodia, Gautam, The Grothendieck group of non-commutative non-noetherian analogues of \(\mathbb{P}^1\) and regular algebras of global dimension two, J. Algebra, 188-210 (2015) · Zbl 1358.16006 · doi:10.1016/j.jalgebra.2014.11.024
[33] Stephenson, Darin R., Growth of graded Noetherian rings, Proc. Amer. Math. Soc., 1593-1605 (1997) · Zbl 0879.16011 · doi:10.1090/S0002-9939-97-03752-0
[34] van Roosmalen, Adam-Christiaan, Abelian hereditary fractionally Calabi-Yau categories, Int. Math. Res. Not. IMRN, 2708-2750 (2012) · Zbl 1247.18009 · doi:10.1093/imrn/rnr118
[35] Wicks, Elizabeth, Frobenius-Perron theory of modified \(ADE\) bound quiver algebras, J. Pure Appl. Algebra, 2673-2708 (2019) · Zbl 1450.16001 · doi:10.1016/j.jpaa.2018.09.013
[36] Yekutieli, Amnon, Dualizing complexes over noncommutative graded algebras, J. Algebra, 41-84 (1992) · Zbl 0790.18005 · doi:10.1016/0021-8693(92)90148-F
[37] Yekutieli, Amnon, Serre duality for noncommutative projective schemes, Proc. Amer. Math. Soc., 697-707 (1997) · Zbl 0860.14001 · doi:10.1090/S0002-9939-97-03782-9
[38] Zhang, James J., Non-Noetherian regular rings of dimension \(2\), Proc. Amer. Math. Soc., 1645-1653 (1998) · Zbl 0902.16036 · doi:10.1090/S0002-9939-98-04480-3
[39] Zhang, James J., Connected graded Gorenstein algebras with enough normal elements, J. Algebra, 390-405 (1997) · Zbl 0937.16049 · doi:10.1006/jabr.1996.6885
[40] J.J. Zhang and J.-H. Zhou, Frobenius-Perron theory of representations of quivers, Math. Z., 300 (2022), 3171-3225, https://doi.org/10.1007/s00209-021-02888-3. · Zbl 07489540
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.