×

Curves of genus \(g\) whose canonical model lies on a surface of degree \(g+1\). (English) Zbl 1260.14067

Let \(C\subset \mathbb {P}^{g-1}\) be a canonically embedded smooth curve of genus \(g\). Let \(\rho\) be the minimal degree of a surface \(S\subset \mathbb {P}^{g-1}\) containing \(C\). A classical problem is the classification of all \(C\) with low \(\rho\). The case \(\rho \leq g\) was known ([E. Ballico, G. Casnati and R. Notari, J. Algebra 332, No. 1, 229–243 (2011; Zbl 1242.14030); G. Casnati, Proc. Am. Math. Soc. 140, No. 4, 1185–1197 (2012; Zbl 1258.14065)]).
The paper under review gives the complete classification of all \(C\) with \(\rho =g+1\): either \(7 \leq g \leq 15\) and \(C\) is birationally isomorphic to a plane septic with \(15-g\) ordinary (possibly infinitely near) singular point (here \(S\) comes from \(\mathbb {P}^2\)) or \(g\geq 9\) and \(C\) has a unique \(g^1_4\) (here \(S\) is a conic bundle; if \(g\geq 16\) the \(g^1_4\) is composed with an involution onto a curve of genus \(2\)). At the end of the introduction the author announces generalizations due to I. Coşkun, which have now been published [“Surfaces of low degree containing a canonical curve”, in: Computational algebraic and analytic geometry. Contemp. Math. 572, 57–70 (2012; doi:10.1099/conm572)].

MSC:

14N25 Varieties of low degree
14H51 Special divisors on curves (gonality, Brill-Noether theory)
14H30 Coverings of curves, fundamental group
14N05 Projective techniques in algebraic geometry
Full Text: DOI

References:

[1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. · Zbl 0559.14017
[2] Edoardo Ballico, Gianfranco Casnati, and Claudio Fontanari, On the geometry of bihyperelliptic curves, J. Korean Math. Soc. 44 (2007), no. 6, 1339 – 1350. · Zbl 1132.14307 · doi:10.4134/JKMS.2007.44.6.1339
[3] E. Ballico, G. Casnati, and R. Notari, Canonical curves with low apolarity, J. Algebra 332 (2011), 229 – 243. · Zbl 1242.14030 · doi:10.1016/j.jalgebra.2010.12.030
[4] James N. Brawner, Tetragonal curves, scrolls, and \?3 surfaces, Trans. Amer. Math. Soc. 349 (1997), no. 8, 3075 – 3091. · Zbl 0881.14016
[5] G. Casnati, Canonical curves on surfaces of very low degree, Proc. Amer. Math. Soc. 140 (2012), 1185-1197. · Zbl 1258.14065
[6] G. Casnati and T. Ekedahl, Covers of algebraic varieties. I. A general structure theorem, covers of degree 3,4 and Enriques surfaces, J. Algebraic Geom. 5 (1996), no. 3, 439 – 460. · Zbl 0866.14009
[7] Gabriela Chaves, Revêtements ramifiés de la droite projective complexe, Math. Z. 226 (1997), no. 1, 67 – 84 (French). · Zbl 0883.14003 · doi:10.1007/PL00004334
[8] C. Ciliberto and J. Harris, Surfaces of low degree containing a general canonical curve, Comm. Algebra 27 (1999), no. 3, 1127 – 1140. · Zbl 0970.14019 · doi:10.1080/00927879908826485
[9] Marc Coppens and Takao Kato, The gonality of smooth curves with plane models, Manuscripta Math. 70 (1990), no. 1, 5 – 25. , https://doi.org/10.1007/BF02568358 Marc Coppens and Takao Kato, Correction to: ”The gonality of smooth curves with plane models”, Manuscripta Math. 71 (1991), no. 3, 337 – 338. · Zbl 0725.14005 · doi:10.1007/BF02568410
[10] Marc Coppens and Takao Kato, The gonality of smooth curves with plane models, Manuscripta Math. 70 (1990), no. 1, 5 – 25. , https://doi.org/10.1007/BF02568358 Marc Coppens and Takao Kato, Correction to: ”The gonality of smooth curves with plane models”, Manuscripta Math. 71 (1991), no. 3, 337 – 338. · Zbl 0725.14005 · doi:10.1007/BF02568410
[11] I. Coşkun, Surfaces of low degree containing a canonical curve. To appear in Contemp. Math.
[12] M. Demazure, Surfaces de Del Pezzo - II, III, IV, V, Séminaire sur les singularités des surfaces, Palaiseau, France 1976-1977 , Lecture Notes in Math. 777, Springer, 1980. · Zbl 0444.14024
[13] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. · Zbl 0367.14001
[14] Juan C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Mathematics, vol. 165, Birkhäuser Boston, Inc., Boston, MA, 1998. · Zbl 0921.14033
[15] Masahito Ohkouchi and Fumio Sakai, The gonality of singular plane curves, Tokyo J. Math. 27 (2004), no. 1, 137 – 147. · Zbl 1060.14047 · doi:10.3836/tjm/1244208480
[16] B. Saint-Donat, On Petri’s analysis of the linear system of quadrics through a canonical curve, Math. Ann. 206 (1973), 157 – 175. · Zbl 0315.14010 · doi:10.1007/BF01430982
[17] Frank-Olaf Schreyer, Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), no. 1, 105 – 137. · Zbl 0578.14002 · doi:10.1007/BF01458587
[18] Frank-Olaf Schreyer, A standard basis approach to syzygies of canonical curves, J. Reine Angew. Math. 421 (1991), 83 – 123. · Zbl 0729.14021 · doi:10.1515/crll.1991.421.83
[19] Oscar Zariski, A simplified proof for the resolution of singularities of an algebraic surface, Ann. of Math. (2) 43 (1942), 583 – 593. · Zbl 0063.08389 · doi:10.2307/1968814
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.