×

Anisotropic strange quintessence stars in modified \(f(R, \phi)\) theory of gravity. (English) Zbl 07910054

Summary: This paper investigated the anisotropic quintessence stars in the \(f(R, \phi)\) theory of gravity, where \(R\) is the Ricci scalar and \(\phi\) is the scalar potential. We investigated the field equations of the \(f(R, \phi)\) theory of gravity by using the Krori-Barua technique. We have determined that all the obtained solutions are free from central singularity and potentially stable. The observed values of mass and radius of the different strange stars Her X1, SAXJ1808.4-3658, and 4U1820-30 have been used to calculate the values of unknown constants in the Krori and Barua metric. The physical phenomena of stars, such as energy density, pressure components, anisotropy, sound speeds, equation of state parameters, energy conditions and redshift have been investigated in detail.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
Full Text: DOI

References:

[1] Shamir, M. F. and Malik, A., Bardeen compact stars in modified \(f(R)\) gravity, Chin. J. Phys.69 (2021) 312-321. · Zbl 07833887
[2] Malik, A. and Shamir, M. F., Dynamics of some cosmological solutions in modified \(f(R)\) gravity, New Astron.82 (2020) 101460.
[3] Malik, A.et al., Anisotropic spheres via embedding approach in \(f(R)\) gravity, Int. J. Geom. Methods Mod. Phys.19 (2022) 2250073. · Zbl 1534.83096
[4] Malik, A.et al., Traversable wormhole solutions in \(f(R)\) theories of gravity via Karmarkar condition, Chin. Phys. C46(9) (2022) 095104.
[5] Mardan, S. A.et al., Spherically symmetric generating solutions in \(f(R)\) theory, Eur. Phys. J. Plus138 (2023) 782.
[6] Malik, A.et al., A comprehensive discussion for the identification of cracking points in \(f(R)\) theories of gravity, Eur. Phys. J. C83 (2023) 765.
[7] Yousaf, Z.et al., Stability of anisotropy pressure in self-gravitational systems in \(f(G)\) gravity, Axioms12 (2023) 257.
[8] Malik, A.et al., Bardeen compact stars in modified \(f(G)\) gravity, Can. J. Phys.100 (2022) 452-462.
[9] Yousaf, Z.et al., Bouncing cosmology with 4D-EGB gravity, Int. J. Theor. Phys.62 (2023) 155. · Zbl 1534.83109
[10] Shamir, M. F.et al., Relativistic Krori-Barua compact stars in \(f(R,T)\) gravity, Fortschr. Phys.70 (2022) 2200134. · Zbl 1537.85003
[11] Malik, A.et al., Krori-Barua Bardeen compact stars in \(f(R,T)\) gravity, New Astron.104 (2023) 102071.
[12] Asghar, Z.et al., Study of embedded class-I fluid spheres in \(f(R,T)\) gravity with Karmarkar condition, Chin. J. Phys.83 (2023) 427-437. · Zbl 1537.83101
[13] Malik, A.et al., A comprehensive discussion for the identification of cracking points in \(f(R,T)\) theory of gravity, Eur. Phys. J. C83 (2023) 845.
[14] Naz, T.et al., Evolving embedded traversable wormholes in \(f(R,G)\) gravity: A comparative study, Phys. Dark Univ.42 (2023) 101301.
[15] Bhar, P.et al., Physical characteristics and maximum allowable mass of hybrid star in the context of \(f(Q)\) gravity, Eur. Phys. J. C83 (2023) 646.
[16] Malik, A., Comprehensive study of cylindrical Levi-Civita and cosmic string solutions in Rastall theory of gravity, Chin. J. Phys.84 (2023) 357-370. · Zbl 1539.83087
[17] Asghar, Z.et al., Comprehensive analysis of relativistic embedded class-I exponential compact spheres in \(f(R,\phi)\) gravity via Karmarkar condition, Commun. Theor. Phys.75 (2023) 105401. · Zbl 1529.85002
[18] Malik, A. and Shamir, M. F., The study of godel type solutions in \(f(R,\phi)\) gravity, New Astron.80 (2020) 101422.
[19] Malik, A., A study of Levi-Civita’s cylindrical solutions in \(f(R,\phi)\) gravity, Eur. Phys. J. Plus136 (2021) 1146.
[20] Shamir, M. F.et al., Non-commutative wormhole solutions in modified \(f(R,\phi,X)\) gravity, Chin. J. Phys.73 (2021) 634-648. · Zbl 07837817
[21] Shamir, M. F.et al., Wormhole solutions in modified \(f(R,\phi,X)\) gravity, Int. J. Mod. Phys. A36 (2021) 2150021.
[22] Shamir, M. F.et al., Dark universe with Noether symmetry, Theor. Math. Phys.205 (2020) 1692-1705. · Zbl 1460.83071
[23] Buchdahl, H. A., Non-linear Lagrangians and cosmological theory, Mon. Not. R. Astron. Soc.150(1) (1970) 1-8.
[24] Harko, T., Evolution of cosmological perturbations in Bose-Einstein condensate dark matter, Mon. Not. R. Astron. Soc.413 (4) (2011) 3095-3104.
[25] Sharif, M. and Ikram, A., Energy conditions in \(f(G,T)\) gravity, Eur. Phys. J. C76 (2016) 1-13.
[26] Capozziello, S. and Laurentis, M. D., Extended theories of gravity, Phys. Rep.509(4-5) (2011) 167-321.
[27] Shamir, M. F. and Malik, A., Behavior of anisotropic compact stars in \(f(R,\phi)\) gravity, Commun. Theor. Phys.71(5) (2019) 001. · Zbl 1452.83028
[28] Malik, A., Analysis of charged compact stars in modified \(f(R,\phi)\) theory of gravity, New Astron.93 (2022) 101765.
[29] Malik, A.et al., A study of anisotropic compact stars in \(f(R,\phi,X)\) theory of gravity, Int. J. Geom. Methods Mod. Phys.19 (2022) 2250028. · Zbl 1534.83095
[30] Malik, A.et al., A study of charged stellar structures in modified \(f(R,\phi,X)\) theory of gravity, Int. J. Geom. Methods Mod. Phys.19(11) (2022) 2250180. · Zbl 07908945
[31] Astashenok, A. V.et al., Further stable neutron star models from \(f(R)\) gravity, J. Cosmol. Astropart. Phys.2013 (2013) 040.
[32] Astashenok, A. V.et al., Extreme neutron stars from extended theories of gravity, J. Cosmol. Astropart. Phys.2015 (2015) 001.
[33] Astashenok, A. V.et al., Extended gravity description for the GW190814 supermassive neutron star, Phys. Lett. B811 (2020) 135910. · Zbl 1475.85007
[34] Astashenok, A. V.et al., Nonperturbative models of quark stars in \(f(R)\) gravity, Phys. Lett. B742 (2015) 160. · Zbl 1345.83026
[35] Capozziello, S.et al., Constraining extended gravity models by S2 star orbits around the galactic centre, Phys. Rev. D90 (2014) 044052.
[36] Capozziello, S.et al., Mass-radius relation for neutron stars in gravity, Phys. Rev. D93 (2016) 023501.
[37] Capozziello, S.et al., Hydrostatic equilibrium and stellar structure in \(f(R)\) gravity, Phys. Rev. D83 (2011) 064004.
[38] Capozziello, S., J. Cosmol. Astropart. Phys.2013 (2013) 040.
[39] Bowers, R. L. and Liang, E. P. T., Anisotropic spheres in general relativity, Astrophys. J.188 (1974) 657.
[40] Starobinsky, A. A., A new type of isotropic cosmological models without singularity, Phys. Lett. B91 (1980) 99-102. · Zbl 1371.83222
[41] Lobo, F. S. N., Stable dark energy stars, Class. Quantum Grav.23 (2006) 1525. · Zbl 1090.83017
[42] Dymnikova, I., The cosmological term as a source of mass, Class. Quantum Grav.19 (2002) 725. · Zbl 1005.83051
[43] Varela, V., Charged anisotropic matter with linear or nonlinear equation of state, Phys. Rev. D82(4) (2010) 044052.
[44] Dey, M.et al., Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential, Phys. Lett. B438(1-2) (1998) 123-128.
[45] Usov, V. V., Electric fields at the quark surface of strange stars in the color-flavor locked phase, Phys. Rev. D70 (2004) 067301.
[46] Mak, M. K. and Harko, T., An exact anisotropic quark star model, Chin. J. Astron. Astrophys.2(3) (2002) 248.
[47] Malik, A.et al., Analysis of charged compact stars in \(f(R,T)\) gravity using Bardeen geometry, Int. J. Geom. Methods Mod. Phys.20(4) (2023) 2350061. · Zbl 1535.83104
[48] Malik, A.et al., Singularity-free anisotropic strange quintessence stars in \(f(R,\phi,X)\) theory of gravity, Eur. Phys. J. Plus138 (2023) 418.
[49] Yousaf, Z.et al., Electromagnetic effects on anisotropic expansion-free fluid content, Commun. Theor. Phys.75 (2023) 105202. · Zbl 1529.83024
[50] Wang, D.et al., Observational constraints on a logarithmic scalar field dark energy model and black hole mass evolution in the Universe, Eur. Phys. J. C83 (2023) 670.
[51] Malik, A.et al., Analysis of class I complexity induced spherical polytropic models for compact objects, Front. Astron. Space Sci.10 (2023) 1182772.
[52] Malik, A.et al., Investigation of traversable wormhole solutions in modified \(f(R)\) gravity with scalar potential, Eur. Phys. J. C83 (2023) 522.
[53] Malik, A.et al., Embedding procedure and wormhole solutions in Rastall gravity utilizing the class I approach, Int. J. Geom. Methods Mod. Phys.20 (2023) 2350145. · Zbl 1535.83103
[54] Bhar, P., Singularity-free anisotropic strange quintessence star, Astrophys. Space Sci.356 (2015) 309-318.
[55] Abbas, G.et al., Anisotropic strange quintessence stars in \(f(R)\) gravity, Astrophys. Space Sci.358 (2015) 26.
[56] Saha, P. and Debnath, U., Anisotropic quintessence strange stars in gravity with modified Chaplygin gas, Adv. High Energy Phys.2018 (2018) 3901790. · Zbl 1402.83086
[57] Shamir, M. F.et al., Anisotropic strange quintessence stars in \(f(R,G)\) gravity, Int. J. Geom. Methods Mod. Phys.17(14) (2020) 2050216. · Zbl 07819426
[58] Abbas, G. and Shahzad, M. R., A new model of quintessence compact stars in the Rastall theory of gravity, Eur. Phys. J. A54(12) (2018) 211.
[59] Saha, P. and Debnath, U., Study of anisotropic compact stars with quintessence field and modified Chaplygin gas in \(f(T)\) gravity, Eur. Phys. J. C79 (2019) 1-16.
[60] Odintsov, S. D. and Oikonomou, V. K., Inflationary attractors predictions for static neutron stars in the mass-gap region, Phys. Rev. D107(10) (2023) 104039.
[61] Oikonomou, V. K., Static neutron stars perspective of quadratic and induced inflationary attractor scalar-tensor theories, Class. Quantum Grav.40(8) (2023) 085005. · Zbl 1521.83174
[62] Oikonomou, V. K., \( R^p\) attractors static neutron star phenomenology, Mon. Not. R. Astron. Soc.520(2) (2023) 2934-2941.
[63] Nojiri, S.et al., Formalizing anisotropic inflation in modified gravity, Nucl. Phys. B985 (2022) 116011. · Zbl 1516.83054
[64] Oikonomou, V. K., Primordial gravitational waves predictions for GW170817-compatible Einstein-Gauss-Bonnet theory, Astropart. Phys.141 (2022) 102718.
[65] Odintsov, S. D. and Oikonomou, V. K., Neutron stars in scalar-tensor gravity with quartic order scalar potential, Ann. Phys.440 (2022) 168839. · Zbl 1494.85004
[66] Astashenok, A. V.et al., Maximum baryon masses for static neutron stars in \(f(R)\) gravity, Europhys. Lett.136 (2022) 59001.
[67] Astashenok, A. V.et al., Novel stellar astrophysics from extended gravity, Europhys. Lett.134(5) (2021) 59001.
[68] Nashed, G. G. L., Charged dilaton, energy, momentum and angular-momentum in teleparallel theory equivalent to general relativity, Eur. Phys. J. C54 (2008) 291. · Zbl 1189.83022
[69] Nashed, G. G. L. and Shirafuji, T., Reissner-Nordström space-time in the tetrad theory of gravitation, Int. J. Mod. Phys. D16(01) (2007) 65-79. · Zbl 1115.83320
[70] Nashed, G. G. L., Reissner-Nordström solutions and energy in teleparallel theory, Mod. Phys. Lett. A21(29) (2006) 2241-2250. · Zbl 1119.83008
[71] Nashed, G. G. L. and Capozziello, S., Stable and self-consistent compact star models in teleparallel gravity, Eur. Phys. J. C80 (2020) 1-18.
[72] Roupas, Z. and Nashed, G. G. L., Anisotropic neutron stars modelling: constraints in Krori-Barua spacetime, Eur. Phys. J. C80 (2020) 1-11.
[73] El Hanafy, W. and Nashed, G. G. L., The hidden flat like universe: Starobinsky-like inflation induced by \(f(T)\) gravity, Eur. Phys. J. C75 (2015) 1-14.
[74] Nashed, G. G. L., Kerr-Newman solution and energy in teleparallel equivalent of einstein theory, Mod. Phys. Lett. A22(14) (2007) 1047-1056. · Zbl 1138.83314
[75] Nashed, G. G. L.et al., Charged rotating black holes coupled with nonlinear electrodynamics Maxwell field in the mimetic gravity, J. Cosmol. Astropart. Phys.2019(01) (2019) 058. · Zbl 1542.83029
[76] Nashed, G. G. L. and Nojiri, S., Nontrivial black hole solutions in \(f(R)\) gravitational theory, Phys. Rev. D102(12) (2020) 124022.
[77] Nashed, G. G. L. and Saridakis, E. N., New rotating black holes in nonlinear Maxwell \(f(R)\) gravity, Phys. Rev. D102(12) (2020) 124072.
[78] Capozziello, S. and Nashed, G. G. L., Rotating and non-rotating AdS black holes in \(f(T)\) gravity non-linear electrodynamics, Eur. Phys. J. C79(11) (2019) 911.
[79] Nashed, G. G. L.et al., Thermodynamical correspondence of \(f(R)\) gravity in the Jordan and Einstein frames, Int. J. Mod. Phys. D29(13) (2020) 2050090.
[80] Nashed, G. G. L.et al., Anisotropic compact stars in higher-order curvature theory, Eur. Phys. J. C81(6) (2021) 528.
[81] Malik, A. and Nafees, A., Existence of static wormhole solutions in \(f(R,\phi,X)\) gravity, New Astron.89 (2021) 101632.
[82] Malik, A.et al., Some dark energy cosmological models in \(f(R,\phi)\) gravity, New Astron.89 (2021) 101631.
[83] Malik, A.et al., Some Bianchi type cosmological models in \(f(R,\phi)\) gravity, New Astron.81 (2020) 101418.
[84] Malik, A.et al., Energy bounds in \(f(R,\phi)\) gravity with anisotropic backgrounds, New Astron.79 (2020) 101392.
[85] Bhar, P.et al., Possibility of higher-dimensional anisotropic compact star, Eur. Phys. J. C75 (2015) 1-13.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.