×

Hydrodynamic instabilities of a dual-mode air-\(\mathrm{SF}_6\) interface induced by a cylindrically convergent shock. (English) Zbl 1527.76019

Summary: Shock-tube experiments are performed on the convergent Richtmyer-Meshkov (RM) instability of a multimode interface. The temporal growth of each Fourier mode perturbation is measured. The hydrodynamic instabilities, including the RM instability and the additional Rayleigh-Taylor (RT) effect, imposed by the convergent shock wave on the dual-mode interface, are investigated. The mode-coupling effect on the convergent RM instability coupled with the RT effect is quantified. It is evident that the amplitude growths of all first-order modes and second-order harmonics and their couplings depend on the variance of the interface radius, and are influenced by the mode-coupling from the very beginning. It is confirmed that the mode-coupling mechanism is closely related to the initial spectrum, including azimuthal wavenumbers, relative phases and initial amplitudes of the constituent modes. Different from the conclusion in previous studies on the convergent single-mode RM instability that the additional RT effect always suppresses the perturbation growth, the mode-coupling might result in the additional RT effect promoting the instability of the constituent Fourier mode. By considering the geometry convergence, the mode-coupling effect and other physical mechanisms, second-order nonlinear solutions are established to predict the RM instability and the additional RT effect in the cylindrical geometry, reasonably quantifying the amplitude growths of each mode, harmonic and coupling. The nonlinear solutions are further validated by simulations considering various initial spectra. Last, the temporal evolutions of the mixed mass and normalized mixed mass of a shocked multimode interface are calculated numerically to quantify the mixing of two fluids in the cylindrical geometry.

MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
76L05 Shock waves and blast waves in fluid mechanics
76-05 Experimental work for problems pertaining to fluid mechanics
Full Text: DOI

References:

[1] Abarzhi, S.I.2008Coherent structures and pattern formation in Rayleigh-Taylor turbulent mixing. Phys. Scr.78 (1), 015401.
[2] Abarzhi, S.I.2010Review of theoretical modelling approaches of Rayleigh-Taylor instabilities and turbulent mixing. Phil. Trans. R. Soc. Lond. A368 (1916), 1809-1828. · Zbl 1192.76003
[3] Abgrall, R.1996How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys.125 (1), 150-160. · Zbl 0847.76060
[4] Alon, U., Hecht, J., Mukamel, D. & Shvarts, D.1994Scale invariant mixing rates of hydrodynamically unstable interface. Phys. Rev. Lett.72, 2867-2870.
[5] Alon, U., Hecht, J., Ofer, D. & Shvarts, D.1995Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts. Phys. Rev. Lett.74, 534-537.
[6] Amendt, P., Colvin, J.D., Ramshaw, J.D., Robey, H.F. & Landen, O.L.2003Modified Bell-Plesset effect with compressibility: application to double-shell ignition target designs. Phys. Plasmas10 (3), 820-829.
[7] Apazidis, N. & Lesser, M.B.1996On generation and convergence of polygonal-shaped shock waves. J. Fluid Mech.309, 301-319. · Zbl 0868.76044
[8] Apazidis, N., Lesser, M.B., Tillmark, N. & Johansson, B.2002An experimental and theoretical study of converging polygonal shock waves. Shock Waves12, 39-58. · Zbl 1002.76535
[9] Balasubramanian, S., Orlicz, G.C. & Prestridge, K.P.2013Experimental study of initial condition dependence on turbulent mixing in shock-accelerated Richtmyer-Meshkov fluid layers. J. Turbul.14 (3), 170-196.
[10] Bates, J.W.2004Initial value problem solution for isolated rippled shock fronts in arbitrary fluid media. Phys. Rev. E69 (5), 056313.
[11] Bell, G.I.1951 Taylor instability on cylinders and spheres in the small amplitude approximation. Tech. Rep. LA-1321. Los Alamos National Laboratory.
[12] Bender, J.D., et al.2021Simulation and flow physics of a shocked and reshocked high-energy-density mixing layer. J. Fluid Mech.915, A84. · Zbl 1461.76007
[13] Biamino, L., Jourdan, G., Houas, L., Vandenboomgaerde, M. & Souffland, D.2017 Light/heavy converging Richtmyer-Meshkov instability in a conventional shock tube. In International Symposium on Shock Waves (ed. A. Sasoh, T. Aoki & M. Katayama), pp. 595-601. Springer.
[14] Biamino, L., Jourdan, G., Mariani, C., Houas, L., Vandenboomgaerde, M. & Souffland, D.2015On the possibility of studying the converging Richtmyer-Meshkov instability in a conventional shock tube. Exp. Fluids56, 26.
[15] Brasseur, M., Vandenboomgaerde, M., Mariani, C., Barros, D.C., Souffland, D. & Jourdan, G.2021Experimental generation of spherical converging shock waves. Exp. Fluids62 (7), 1-8.
[16] Brouillette, M.2002The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech.34, 445-468. · Zbl 1047.76025
[17] Campos, F.C. & Wouchuk, J.G.2016Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected. Phys. Rev. E93 (5), 053111.
[18] Chester, W.1954The quasi-cylindrical shock tube. Phil. Mag.45, 1293-1301. · Zbl 0057.18601
[19] Chisnell, R.F.1957The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech.2, 286-298. · Zbl 0078.17501
[20] Dell, Z., Stellingwerf, R.F. & Abarzhi, S.I.2015Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks. Phys. Plasmas22 (9), 092711.
[21] Dell, Z.R., Pandian, A., Bhowmick, A.K., Swisher, N.C., Stanic, M., Stellingwerf, R.F. & Abarzhi, S.I.2017Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability. Phys. Plasmas24 (9), 090702.
[22] Di Stefano, C.A., Malamud, G., Kuranz, C.C., Klein, S.R. & Drake, R.P.2015aMeasurement of Richtmyer-Meshkov mode coupling under steady shock conditions and at high energy density. High Energy Density Phys.17, 263-269.
[23] Di Stefano, C.A., Malamud, G., Kuranz, C.C., Klein, S.R., Stoeckl, C. & Drake, R.P.2015bRichtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime. Appl. Phys. Lett.106 (11), 114103.
[24] Dimonte, G. & Ramaprabhu, P.2010Simulations and model of the nonlinear Richtmyer-Meshkov instability. Phys. Fluids22, 014104. · Zbl 1183.76181
[25] Dimonte, G. & Schneider, M.2000Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids12, 304-321. · Zbl 1149.76361
[26] Dimotakis, P.E. & Samtaney, R.2006Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids18, 031705.
[27] Ding, J., Deng, X. & Luo, X.2021Convergent Richtmyer-Meshkov instability on a light gas layer with perturbed inner and outer surfaces. Phys. Fluids33 (10), 102112.
[28] Ding, J., Li, J., Sun, R., Zhai, Z. & Luo, X.2019Convergent Richtmyer-Meshkov instability of a heavy gas layer with perturbed outer interface. J. Fluid Mech.878, 277-291. · Zbl 1430.76196
[29] Ding, J., Liang, Y., Chen, M., Zhai, Z., Si, T. & Luo, X.2018Interaction of planar shock wave with three-dimensional heavy cylindrical bubble. Phys. Fluids30 (10), 106109.
[30] Ding, J., Si, T., Yang, J., Lu, X., Zhai, Z. & Luo, X.2017aMeasurement of a Richtmyer-Meshkov instability at an air-\(SF_6\) interface in a semiannular shock tube. Phys. Rev. Lett.119 (1), 014501.
[31] Ding, J.C., Si, T., Chen, M.J., Zhai, Z.G., Lu, X.Y. & Luo, X.S.2017bOn the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech.828, 289-317. · Zbl 1460.76608
[32] Drake, R.P.2018High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics. Springer.
[33] Elbaz, Y. & Shvarts, D.2018Modal model mean field self-similar solutions to the asymptotic evolution of Rayleigh-Taylor and Richtmyer-Meshkov instabilities and its dependence on the initial conditions. Phys. Plasmas25 (6), 062126.
[34] Epstein, R.2004On the Bell-Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh-Taylor instability. Phys. Plasmas11 (11), 5114-5124.
[35] Fan, E., Guan, B., Wen, C.Y. & Shen, H.2019Numerical study on the jet formation of simple-geometry heavy gas inhomogeneities. Phys. Fluids31, 026103.
[36] Fincke, J.R., Lanier, N.E., Batha, S.H., Hueckstaedt, R.M., Magelssen, G.R., Rothman, S.D., Parker, K.W. & Horsfield, C.J.2004Postponement of saturation of the Richtmyer-Meshkov instability in a convergent geometry. Phys. Rev. Lett.93 (11), 115003. · Zbl 1132.85311
[37] Glendinning, S.G., et al.2000Ablation front Rayleigh-Taylor growth experiments in spherically convergent geometry. Phys. Plasmas7 (5), 2033-2039.
[38] Groom, M. & Thornber, B.2020The influence of initial perturbation power spectra on the growth of a turbulent mixing layer induced by Richtmyer-Meshkov instability. Physica D407, 132463. · Zbl 1485.76043
[39] Grove, J.W., Holmes, R., Sharp, D.H., Yang, Y. & Zhang, Q.1993Quantitative theory of Richtmyer-Meshkov instability. Phys. Rev. Lett.71, 3473-3476.
[40] Guan, B., Liu, Y., Wen, C.-Y. & Shen, H.2018Numerical study on liquid droplet internal flow under shock impact. AIAA J.56 (9), 3382-3387.
[41] Guo, H.2018 Theoretical study of weakly nonlinear Rayleigh-Taylor instability in cylindrical implosions. PhD thesis, China Academy of Engineering Physics.
[42] Guo, H., Cheng, T. & Li, Y.2020Weakly nonlinear multi-mode Bell-Plesset growth in cylindrical geometry. Chin. Phys. B29 (11), 115202.
[43] Guo, H., Wang, L., Ye, W., Wu, J. & Zhang, W.2018Weakly nonlinear Rayleigh-Taylor instability in cylindrically convergent geometry. Chin. Phys. Lett.35 (5), 055201.
[44] Guo, H., Yu, X., Wang, L., Ye, W., Wu, J. & Li, Y.2014On the second harmonic generation through Bell-Plesset effects in cylindrical geometry. Chin. Phys. Lett.31 (4), 044702.
[45] Guo, X., Cong, Z., Si, T. & Luo, X.2022Shock-tube studies of single- and quasi-single-mode perturbation growth in Richtmyer-Meshkov flows with reshock. J. Fluid Mech.941, A65.
[46] Haan, S.W.1989Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A39 (11), 5812.
[47] Haan, S.W.1991Weakly nonlinear hydrodynamic instabilities in inertial fusion. Phys. Fluids B3, 2349-2355.
[48] Herrmann, M., Moin, P. & Abarzhi, S.I.2008Nonlinear evolution of the Richtmyer-Meshkov instability. J. Fluid Mech.612, 311-338. · Zbl 1151.76478
[49] Holmes, R.L., Dimonte, G., Fryxell, B., Gittings, M.L., Grove, J.W., Schneider, M., Sharp, D.H., Velikovich, A.L., Weaver, R.P. & Zhang, Q.1999Richtmyer-Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech.389, 55-79. · Zbl 0954.76026
[50] Holmes, R.L. & Grove, J.W.1995Numerical investigation of Richtmyer-Meshkov instability using front tracking. J. Fluid Mech.301, 51-64.
[51] Hosseini, S.H.R. & Takayama, K.2005Experimental study of Richtmyer-Meshkov instability induced by cylndrical shock waves. Phys. Fluids17, 084101. · Zbl 1187.76218
[52] Igra, D. & Igra, O.2020Shock wave interaction with a polygonal bubble containing two different gases, a numerical investigation. J. Fluid Mech.889, A26. · Zbl 1460.76666
[53] Jacobs, J.W. & Catton, I.1988Three-dimensional Rayleigh-Taylor instability. Part 1. Weakly nonlinear theory. J. Fluid Mech.187, 329-352. · Zbl 0642.76066
[54] Jiang, Y., Wen, C.-Y. & Zhang, D.2020Space-time conservation element and solution element method and its applications. AIAA J.58 (12), 5408-5430.
[55] Kjellander, M., Tillmark, N. & Apazidis, N.2012Energy concentration by spherical converging shocks generated in a shock tube. Phys. Fluids24 (12), 126103. · Zbl 1190.76062
[56] Lei, F., Ding, J., Si, T., Zhai, Z. & Luo, X.2017Experimental study on a sinusoidal air/\(SF_6\) interface accelerated by a cylindrically converging shock. J. Fluid Mech.826, 819-829.
[57] Leinov, E., Malamud, G., Elbaz, Y., Levin, L.A., Ben-Dor, G., Shvarts, D. & Sadot, O.2009Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions. J. Fluid Mech.626, 449-475. · Zbl 1171.76312
[58] Li, J., Ding, J., Luo, X. & Zou, L.2022Instability of a heavy gas layer induced by a cylindrical convergent shock. Phys. Fluids34 (4), 042123.
[59] Li, J., Ding, J., Si, T. & Luo, X.2020aConvergent Richtmyer-Meshkov instability of light gas layer with perturbed outer surface. J. Fluid Mech.884, R2. · Zbl 1460.76620
[60] Li, M., Ding, J., Zhai, Z., Si, T., Liu, N., Huang, S. & Luo, X.2020bOn divergent Richtmyer-Meshkov instability of a light/heavy interface. J. Fluid Mech.901, A38. · Zbl 1460.76621
[61] Li, X., Fu, Y., Yu, C. & Li, L.2021Statistical characteristics of turbulent mixing in spherical and cylindrical converging Richtmyer-Meshkov instabilities. J. Fluid Mech.928, A10. · Zbl 1492.76066
[62] Liang, Y.2022aFundamental Studies of Shock-Driven Hydrodynamic Instabilities. Springer Nature.
[63] Liang, Y.2022bThe phase effect on the Richtmyer-Meshkov instability of a fluid layer. Phys. Fluids34 (3), 034106.
[64] Liang, Y., Ding, J., Zhai, Z., Si, T. & Luo, X.2017Interaction of cylindrically converging diffracted shock with uniform interface. Phys. Fluids29 (8), 086101.
[65] Liang, Y., Liu, L. & Luo, X.2022Experimental study of bubble competition and spike competition in Richtmyer-Meshkov flows. J. Fluid Mech.949, A3.
[66] Liang, Y., Liu, L., Zhai, Z., Ding, J., Si, T. & Luo, X.2021Richtmyer-Meshkov instability on two-dimensional multi-mode interfaces. J. Fluid Mech.928, A37.
[67] Liang, Y. & Luo, X.2023Hydrodynamic instabilities of two successive slow/fast interfaces induced by a weak shock. J. Fluid Mech.955, A40. · Zbl 1539.76064
[68] Liang, Y., Zhai, Z., Ding, J. & Luo, X.2019Richtmyer-Meshkov instability on a quasi-single-mode interface. J. Fluid Mech.872, 729-751. · Zbl 1430.76180
[69] Liang, Y., Zhai, Z. & Luo, X.2018Interaction of strong converging shock wave with \(SF_6\) gas bubble. Sci. China Phys. Mech.61 (6), 1-9.
[70] Liang, Y., Zhai, Z., Luo, X. & Wen, C.-Y.2020Interfacial instability at a heavy/light interface induced by rarefaction waves. J. Fluid Mech.885, A42. · Zbl 1460.76330
[71] Liu, H. & Xiao, Z.2016Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability. Phys. Rev. E93 (5), 053112.
[72] Liu, L., Liang, Y., Ding, J., Liu, N. & Luo, X.2018An elaborate experiment on the single-mode Richtmyer-Meshkov instability. J. Fluid Mech.853, R2. · Zbl 1415.76244
[73] Liu, W., He, X. & Yu, C.2012Cylindrical effects on Richtmyer-Meshkov instability for arbitrary Atwood numbers in weakly nonlinear regime. Phys. Plasmas19 (7), 072108.
[74] Liu, W., Wang, X., Liu, X., Yu, C., Fang, M. & Ye, W.2020Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers. Sci. Rep.10 (1), 1-9.
[75] Liu, W., Yu, C., Ye, W., Wang, L. & He, X.2014Nonlinear theory of classical cylindrical Richtmyer-Meshkov instability for arbitrary Atwood numbers. Phys. Plasmas21 (6), 062119.
[76] Liverts, M. & Apazidis, N.2016Limiting temperatures of spherical shock wave implosion. Phys. Rev. Lett.116, 014501.
[77] Livescu, D.2020Turbulence with large thermal and compositional density variations. Annu. Rev. Fluid Mech.52, 309-341. · Zbl 1439.76033
[78] Lombardini, M. & Pullin, D.I.2009aStartup process in the Richtmyer-Meshkov instability. Phys. Fluids21 (4), 044104. · Zbl 1183.76324
[79] Lombardini, M. & Pullin, D.I.2009bSmall-amplitude perturbations in the three-dimensional cylindrical Richtmyer-Meshkov instability. Phys. Fluids21, 114103. · Zbl 1183.76325
[80] Lombardini, M., Pullin, D.I. & Meiron, D.I.2014Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. J. Fluid Mech.748, 85.
[81] Luo, X., Ding, J., Wang, M., Zhai, Z. & Si, T.2015A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability. Phys. Fluids27 (9), 091702.
[82] Luo, X., Li, M., Ding, J., Zhai, Z. & Si, T.2019Nonlinear behaviour of convergent Richtmyer-Meshkov instability. J. Fluid Mech.877, 130-141. · Zbl 1430.76198
[83] Luo, X., Liu, L., Liang, Y., Ding, J. & Wen, C.-Y.2020Richtmyer-Meshkov instability on a dual-mode interface. J. Fluid Mech.905, A5.
[84] Luo, X., Si, T., Yang, J. & Zhai, Z.2014A cylindrical converging shock tube for shock-interface studies. Rev. Sci. Instrum.85, 015107.
[85] Luo, X., Zhang, F., Ding, J., Si, T., Yang, J., Zhai, Z. & Wen, C.2018Long-term effect of Rayleigh-Taylor stabilization on converging Richtmyer-Meshkov instability. J. Fluid Mech.849, 231-244. · Zbl 1415.76522
[86] Mansoor, M.M., Dalton, S.M., Martinez, A.A., Desjardins, T., Charonko, J.J. & Prestridge, K.P.2020The effect of initial conditions on mixing transition of the Richtmyer-Meshkov instability. J. Fluid Mech.904, A3. · Zbl 1460.76394
[87] Matsuoka, C. & Nishihara, K.2006Fully nonlinear evolution of a cylindrical vortex sheet in incompressible Richtmyer-Meshkov instabilitys. Phys. Rev. E73, 055304.
[88] Meshkov, E.E.1969Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn.4, 101-104.
[89] Mikaelian, K.O.1990Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells. Phys. Rev. A42, 3400.
[90] Mikaelian, K.O.2005Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids17, 094105. · Zbl 1187.76353
[91] Miles, A.R.2004Bubble merger model for the nonlinear Rayleigh-Taylor instability driven by a strong blast wave. Phys. Plasmas11, 5140-5155.
[92] Miles, A.R., Edwards, M.J., Blue, B., Hansen, J.F., Robey, H.F., Drake, R.P., Kuranz, C. & Leibrandt, D.R.2004The effects of a short-wavelength mode on the evolution of a long-wavelength perturbatoin driven by a strong blast wave. Phys. Plasmas11, 5507-5519.
[93] Mohaghar, M.2019 Effects of initial conditions and Mach number on turbulent mixing transition of shock-driven variable-density flow. PhD thesis, Georgia Institute of Technology. · Zbl 1419.76269
[94] Mohaghar, M., Carter, J., Musci, B., Reilly, D., Mcfarland, J.A. & Ranjan, D.2017Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech.831, 779-825.
[95] Mohaghar, M., Carter, J., Pathikonda, G. & Ranjan, D.2019The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions. J. Fluid Mech.871, 595-635. · Zbl 1419.76269
[96] Niederhaus, C.E. & Jacobs, J.W.2003Experimental study of the Richtmyer-Meshkov instability of incompressible fluids. J. Fluid Mech.485, 243-277. · Zbl 1110.76004
[97] Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., Ranjan, D., Anderson, M.H. & Bonazza, R.2008A computational parameter study for the three-dimensional shock-bubble interaction. J. Fluid Mech.594, 85-124. · Zbl 1159.76344
[98] Nishihara, K., Wouchuk, J.G., Matsuoka, C., Ishizaki, R. & Zhakhovsky, V.V.2010Richtmyer-Meshkov instability: theory of linear and nonlinear evolution. Phil. Trans. R. Soc. Lond. A368, 1769-1807. · Zbl 1192.76018
[99] Noble, C.D.2022 High-speed measurements of mixing due to the Richtmyer-Meshkov instability in a twice-shocked gas interface. PhD thesis, The University of Wisconsin-Madison.
[100] Noble, C.D., Herzog, J.M., Ames, A.M., Oakley, J., Rothamer, D.A. & Bonazza, R.2020High speed PLIF study of the Richtmyer-Meshkov instability upon re-shock. Physica D410, 132519. · Zbl 1486.76040
[101] Ofer, D., Alon, U., Shvarts, D., Mccrory, R.L. & Verdon, C.P.1996Modal model for the nonlinear multimode Rayleigh-Taylor instability. Phys. Plasmas3 (8), 3073-3090.
[102] Ofer, D., Shvarts, D., Zinamon, Z. & Orszag, S.A.1992Mode coupling in nonlinear Rayleigh-Taylor instability. Phys. Fluids B4 (11), 3549-3561.
[103] Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. & Shvarts, D.2001Dimensionality dependence of the Rayleigh-Taylor and Richtmyer-Meshkov instability late-time scaling laws. Phys. Plasmas8, 2883-2889.
[104] Pandian, A., Stellingwerf, R.F. & Abarzhi, S.I.2017Effect of a relative phase of waves constituting the initial perturbation and the wave interference on the dynamics of strong-shock-driven Richtmyer-Meshkov flows. Phys. Rev. Fluids2 (7), 073903.
[105] Peterson, J.L., Casey, D.T., Hurricane, O.A., Raman, K.S., Robey, H.F. & Smalyuk, V.A.2015Validating hydrodynamic growth in National Ignition Facility implosions. Phys. Plasmas22 (5), 056309.
[106] Plesset, M.S.1954On the stability of fluid flows with spherical symmetry. J. Appl. Phys.25, 96-98. · Zbl 0055.18501
[107] Quirk, J.J. & Karni, S.1996On the dynamics of a shock-bubble interaction. J. Fluid Mech.318, 129-163. · Zbl 0877.76046
[108] Rayleigh, Lord1883Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc.14, 170-177. · JFM 15.0848.02
[109] Remington, B.A., Weber, S.V., Marinak, M.M., Haan, S.W., Kilkenny, J.D., Wallace, R.J. & Dimonte, G.1995Single-mode and multimode Rayleigh-Taylor experiments on nova. Phys. Plasmas2 (1), 241-255.
[110] Richtmyer, R.D.1960Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths13, 297-319.
[111] Rikanati, A., Alon, U. & Shvarts, D.1998Vortex model for the nonlinear evolution of the multimode Richtmyer-Meshkov instability at low Atwood numbers. Phys. Rev. E58, 7410-7418.
[112] Rikanati, A., Oron, D., Sadot, O. & Shvarts, D.2003High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability. Phys. Rev. E67, 026307.
[113] Sadot, O., Erez, L., Alon, U., Oron, D., Levin, L.A., Erez, G., Ben-Dor, G. & Shvarts, D.1998Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability. Phys. Rev. Lett.80, 1654-1657.
[114] Sembian, S. & Liverts, M.2020On using converging shock waves for pressure amplification in shock tubes. Metrologia57 (3), 035008.
[115] Sembian, S., Liverts, M. & Apazidis, N.2018Plane blast wave interaction with an elongated straight and inclined heat-generated inhomogeneity. J. Fluid Mech.851, 245-267. · Zbl 1415.76438
[116] Shen, H. & Parsani, M.2017The role of multidimensional instabilities in direct initiation of gaseous detonations in free space. J. Fluid Mech.813, R4. · Zbl 1383.76324
[117] Shen, H. & Wen, C.-Y.2016A characteristic space-time conservation element and solution element method for conservation laws. II. Multidimensional extension. J. Comput. Phys.305 (C), 775-792. · Zbl 1349.65483
[118] Shen, H., Wen, C.-Y., Liu, K.X. & Zhang, D.L.2015aRobust high-order space-time conservative schemes for solving conservation laws on hybrid meshes. J. Comput. Phys.281, 375-402. · Zbl 1354.65196
[119] Shen, H., Wen, C.Y., Parsani, M. & Shu, C.W.2017Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids. J. Comput. Phys.330, 668-692. · Zbl 1378.76086
[120] Shen, H., Wen, C.-Y. & Zhang, D.L.2015bA characteristic space-time conservation element and solution element method for conservation laws. J. Comput. Phys.288, 101-118. · Zbl 1354.65197
[121] Shyue, K.M.1998An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys.142 (1), 208-242. · Zbl 0934.76062
[122] Si, T., Long, T., Zhai, Z. & Luo, X.2015Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J. Fluid Mech.784, 225-251.
[123] Si, T., Zhai, Z. & Luo, X.2014aExperimental study of Richtmyer-Meshkov instability in a cylindrical converging shock tube. Laser Part. Beams32, 343-351.
[124] Si, T., Zhai, Z., Luo, X. & Yang, J.2014bExperimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves. Shock Waves24, 3-9.
[125] Smalyuk, V.A., et al.2014First measurements of hydrodynamic instability growth in indirectly driven implosions at ignition-relevant conditions on the national ignition facility. Phys. Rev. Lett.112 (18), 185003.
[126] Srebro, Y., Elbaz, Y., Sadot, O., Arazi, L. & Shvarts, D.2003A general buoyancy-drag model for the evolution of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Laser Part. Beams21, 347-353.
[127] Sun, R., Ding, J., Zhai, Z., Si, T. & Luo, X.2020Convergent Richtmyer-Meshkov instability of heavy gas layer with perturbed inner surface. J. Fluid Mech.902, A3. · Zbl 1460.76626
[128] Tang, J., Zhang, F., Luo, X. & Zhai, Z.2021Effect of atwood number on convergent Richtmyer-Meshkov instability. Acta Mechanica Sin.37 (3), 434-446.
[129] Taylor, G.1950The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A201 (1065), 192-196. · Zbl 0038.12201
[130] Thornber, B.2016Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer-Meshkov instability. Phys. Fluids28 (4), 045106.
[131] Thornber, B., Drikakis, D., Youngs, D.L. & Williams, R.J.R.2010The influence of initial condition on turbulent mixing due to Richtmyer-Meshkov instability. J. Fluid Mech.654, 99-139. · Zbl 1193.76066
[132] Thornber, B., et al.2017Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer-Meshkov instability: the \(\theta \)-group collaboration. Phys. Fluids29 (10), 105107.
[133] Toro, E.F., Spruce, M. & Speares, W.1994Restoration of the contact surface in the HLL-Riemann solver. Shock Waves4 (1), 25-34. · Zbl 0811.76053
[134] Tubbs, D.L., Barnes, C.W., Beck, J.B., Hoffman, N.M., Oertel, J.A., Watt, R.G., Boehly, T., Bradley, D., Jaanimagi, P. & Knauer, J.1999Cylindrical implosion experiments using laser direct drive. Phys. Plasmas6 (5), 2095-2104.
[135] Vandenboomgaerde, M., Gauthier, S. & Mügler, C.2002Nonlinear regime of a multimode Richtmyer-Meshkov instability: a simplified perturbation theory. Phys. Fluids14 (3), 1111-1122. · Zbl 1185.76607
[136] Vandenboomgaerde, M., Rouzier, P., Souffland, D., Biamino, L., Jourdan, G., Houas, L. & Mariani, C.2018aNonlinear growth of the converging Richtmyer-Meshkov instability in a conventional shock tube. Phys. Rev. Fluids3, 014001.
[137] Vandenboomgaerde, M., Rouzier, P., Souffland, D., Mariani, C., Biamino, L., Jourdan, G. & Houas, L.2018b Experimental, numerical and theoretical investigation of the converging Richtmyer-Meshkov instability in a conventional shock tube. In 16th International Workshop on the Physics of Compressible Turbulent Mixing.
[138] Velikovich, A.L. & Dimonte, G.1996Nonlinear perturbation theory of the incompressible Richtmyer-Meshkov instability. Phys. Rev. Lett.76 (17), 3112.
[139] Wang, L., Wu, J., Guo, H., Ye, W., Liu, J., Zhang, W. & He, X.2015Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder. Phys. Plasmas22 (8), 082702.
[140] Wang, L.F., Wu, J.F., Ye, W.H., Zhang, W.Y. & He, X.T.2013Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces. Phys. Plasmas20, 042708.
[141] Whitham, G.B.1958On the propagation of shock waves through regions of non-uniform area or flow. J. Fluid Mech.4, 337-360. · Zbl 0081.41501
[142] Wouchuk, J.G. & Nishihara, K.1997Asymptotic growth in the linear Richtmyer-Meshkov instability. Phys. Plasmas4 (4), 1028-1038.
[143] Wu, J., Liu, H. & Xiao, Z.2021Refined modelling of the single-mode cylindrical Richtmyer-Meshkov instability. J. Fluid Mech.908, A9. · Zbl 1461.76341
[144] Yan, Z., Fu, Y., Wang, L., Yu, C. & Li, X.2022Effect of chemical reaction on mixing transition and turbulent statistics of cylindrical Richtmyer-Meshkov instability. J. Fluid Mech.941, A55. · Zbl 1512.76036
[145] Zhai, Z., Li, W., Si, T., Luo, X., Yang, J. & Lu, X.2017Refraction of cylindrical converging shock wave at an air/helium gaseous interface. Phys. Fluids29 (1), 016102.
[146] Zhai, Z., Liang, Y., Liu, L., Ding, J., Luo, X. & Zou, L.2018aInteraction of rippled shock wave with flat fast-slow interface. Phys. Fluids30 (4), 046104.
[147] Zhai, Z., Liu, C., Qin, F., Yang, J. & Luo, X.2010Generation of cylindrical converging shock waves based on shock dynamcis theory. Phys. Fluids22, 041701. · Zbl 1188.76181
[148] Zhai, Z., Ou, J. & Ding, J.2019aCoupling effect on shocked double-gas cylinder evolution. Phys. Fluids31 (9), 096104.
[149] Zhai, Z., Si, T., Luo, X., Yang, J., Liu, C., Tan, D. & Zou, L.2012Parametric study of cylindrical converging shock waves generated based on shock dynamics theory. Phys. Fluids24, 026101.
[150] Zhai, Z., Zhang, F., Zhou, Z., Ding, J. & Wen, C.-Y.2019bNumerical study on Rayleigh-Taylor effect on cylindrically converging Richtmyer-Meshkov instability. Sci. China Phys. Mech.62 (12), 1-10.
[151] Zhai, Z., Zou, L., Wu, Q. & Luo, X.2018bReview of experimental Richtmyer-Meshkov instability in shock tube: from simple to complex. Proc. Inst. Mech. Engrs232, 2830-2849.
[152] Zhang, Q. & Graham, M.J.1997Scaling laws for unstable interfaces driven by strong shocks in cylindrical geometry. Phys. Rev. Lett.79, 2674-2677.
[153] Zhang, Q. & Graham, M.J.1998A numerical study of Richtmyer-Meshkov instability driven by cylindrical shocks. Phys. Fluids10, 974-992.
[154] Zhang, Q. & Sohn, S.I.1997Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids9, 1106-1124. · Zbl 1185.76625
[155] Zhao, Z., Wang, P., Liu, N. & Lu, X.2021Scaling law of mixing layer in cylindrical Rayleigh-Taylor turbulence. Phys. Rev. E104 (5), 055104.
[156] Zhou, Y.2017aRayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720-722, 1-136. · Zbl 1377.76016
[157] Zhou, Y.2017bRayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep.723-725, 1-160. · Zbl 1377.76017
[158] Zhou, Y., Cabot, W.H. & Thornber, B.2016Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows. Phys. Plasmas23 (5), 052712.
[159] Zhou, Y., Clark, T.T., Clark, D.S., Glendinning, S.S., Skinner, A.A., Huntington, C., Hurricane, O.A., Dimits, A.M. & Remington, B.A.2019Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas26 (8), 080901.
[160] Zhou, Y., Groom, M. & Thornber, B.2020aDependence of enstrophy transport and mixed mass on dimensionality and initial conditions in the Richtmyer-Meshkov instability induced flows. Trans. ASME J. Fluids Engng142 (12), 121104.
[161] Zhou, Y., et al.2021Rayleigh-Taylor and Richtmyer-Meshkov instabilities: a journey through scales. Physica D423, 132838. · Zbl 1491.76030
[162] Zhou, Z., Ding, J., Zhai, Z., Cheng, W. & Luo, X.2020bMode coupling in converging Richtmyer-Meshkov instability of dual-mode interface. Acta Mechanica Sin.36 (2), 356-366. · Zbl 07679143
[163] Zou, L., Al-Marouf, M., Cheng, W., Samtaney, R., Ding, J. & Luo, X.2019Richtmyer-Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock. J. Fluid Mech.879, 448-467. · Zbl 1430.76189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.