×

Simulation and flow physics of a shocked and reshocked high-energy-density mixing layer. (English) Zbl 1461.76007

Summary: This paper describes a computational investigation of multimode instability growth and multimaterial mixing induced by multiple shock waves in a high-energy-density (HED) environment, where pressures exceed 1 Mbar. The simulations are based on a series of experiments performed at the National Ignition Facility (NIF) and designed as an HED analogue of non-HED shock-tube studies of the Richtmyer-Meshkov instability and turbulent mixing. A three-dimensional computational modelling framework is presented. It treats many complications absent from canonical non-HED shock-tube flows, including distinct ion and free-electron internal energies, non-ideal equations of state, radiation transport and plasma-state mass diffusivities, viscosities and thermal conductivities. The simulations are tuned to the available NIF data, and traditional statistical quantities of turbulence are analysed. Integrated measures of turbulent kinetic energy and enstrophy both increase by over an order of magnitude due to reshock. Large contributions to enstrophy production during reshock are seen from both the baroclinic source and enstrophy-dilatation terms, highlighting the significance of fluid compressibility in the HED regime. Dimensional analysis reveals that Reynolds numbers and diffusive Péclet numbers in the HED flow are similar to those in a canonical non-HED analogue, but conductive Péclet numbers are much smaller in the HED flow due to efficient thermal conduction by free electrons. It is shown that the mechanism of electron thermal conduction significantly softens local spanwise gradients of both temperature and density, which causes a minor but non-negligible decrease in enstrophy production and small-scale mixing relative to a flow without this mechanism.

MSC:

76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76L05 Shock waves and blast waves in fluid mechanics
76Nxx Compressible fluids and gas dynamics

Software:

NumPy; SciPy; VisIt
Full Text: DOI

References:

[1] Anderson, J.D.2003Modern Compressible Flow: With Historical Perspective, 3rd edn. McGraw-Hill.
[2] Andreopoulos, Y., Agui, J.H. & Briassulis, G.2000Shock wave-turbulence interactions. Annu. Rev. Fluid Mech.32, 309-345. · Zbl 0988.76048
[3] Andronov, V.A., Bakhrakh, S.M., Meshkov, E.E., Mokhov, V.N., Nikiforov, V.V., Pevnitskiĭ, A.V. & Tolshmyakov, A.I.1976Turbulent mixing at contact surface accelerated by shock waves. Sov. Phys. JETP44, 424-427.
[4] Atzeni, S. & Meyer-Ter-Vehn, J.2004The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter. Oxford University Press.
[5] Balakumar, B.J., Orlicz, G.C., Ristorcelli, J.R., Balasubramanian, S., Prestridge, K.P. & Tomkins, C.D.2012Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock: velocity and density statistics. J. Fluid Mech.696, 67-93. · Zbl 1250.76107
[6] Balakumar, B.J., Orlicz, G.C., Tomkins, C.D. & Prestridge, K.P.2008Simultaneous particle-image velocimetry-planar laser-induced fluorescence measurements of Richtmyer-Meshkov instability growth in a gas curtain with and without reshock. Phys. Fluids20, 124103. · Zbl 1182.76044
[7] Bar-Shalom, A., Oreg, J., Goldstein, W.H., Shvarts, D. & Zigler, A.1989Super-transition-arrays: a model for the spectral analysis of hot, dense plasma. Phys. Rev. A40, 3183-3193.
[8] Bell, A.R.1985Non-Spitzer heat flow in a steadily ablating laser-produced plasma. Phys. Fluids28, 2007-2014.
[9] Bergeson, S.D., Baalrud, S.D., Ellison, C.L., Grant, E., Graziani, F.R., Killian, T.C., Murillo, M.S., Roberts, J.L. & Stanton, L.G.2019Exploring the crossover between high-energy-density plasma and ultracold neutral plasma physics. Phys. Plasmas26, 100501.
[10] Bowers, R.L. & Wilson, J.R.1991Numerical Modeling in Applied Physics and Astrophysics. Jones and Bartlett Publishers. · Zbl 0786.76001
[11] Braginskii, S.I.1965 Transport processes in a plasma. In Reviews of Plasma Physics, (ed. M.A. Leontovich), vol. 1, pp. 205-311. Consultants Bureau.
[12] Brouillette, M.2002The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech.34, 445-468. · Zbl 1047.76025
[13] Brunner, T.A.2002 Forms of approximate radiation transport. Tech. Rep. SAND2002-1778. Sandia National Laboratories. Available at: https://www.osti.gov.
[14] Brysk, H.1974Electron-ion equilibration in a partially degenerate plasma. Plasma Phys.16, 927-932.
[15] Burgers, J.M.1969Flow Equations for Composite Gases. Academic Press. · Zbl 0214.25207
[16] Castor, J.I.2004Radiation Hydrodynamics. Cambridge University Press.
[17] Celliers, P.M., Bradley, D.K., Collins, G.W., Hicks, D.G., Boehly, T.R. & Armstrong, W.J.2004Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility. Rev. Sci. Instrum.75, 4916-4929.
[18] Chandrasekhar, S.1961Hydrodynamic and Hydromagnetic Stability. Dover Publications.
[19] Chapman, S. & Cowling, T.G.1970The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press. · Zbl 0063.00782
[20] Chassaing, P., Antonia, R.A., Anselmet, F., Joly, L. & Sarkar, S.2010Variable Density Fluid Turbulence. Kluwer Academic Publishers. · Zbl 1137.76024
[21] Childs, H., et al.2013 VisIt: an end-user tool for visualizing and analyzing very large data. In High Performance Visualization: Enabling Extreme-Scale Scientific Insight (ed. E.W. Bethel, H. Childs & C. Hansen), pp. 357-372. Taylor & Francis.
[22] Clark, D.S., et al.2013Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility. Phys. Plasmas20, 056318.
[23] Clark, D.S., et al.2019Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Phys. Plasmas26, 050601.
[24] Collins, B.D. & Jacobs, J.W.2002PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/\(SF_6\) interface. J. Fluid Mech.464, 113-136. · Zbl 1008.76503
[25] Cook, A.W.2009Enthalpy diffusion in multicomponent flows. Phys. Fluids21, 055109. · Zbl 1183.76157
[26] Cook, A.W. & Dimotakis, P.E.2001Transition stages of Rayleigh-Taylor instability between miscible fluids. J. Fluid Mech.443, 66-99. · Zbl 1015.76037
[27] Cowie, L.L. & Mckee, C.F.1977The evaporation of spherical clouds in a hot gas. I. Classical and saturated mass loss rates. Astrophys. J.211, 135-146.
[28] Darlington, R.M., Mcabee, T.L. & Rodrigue, G.2001A study of ALE simulations of Rayleigh-Taylor instability. Comput. Phys. Commun.135, 58-73. · Zbl 0987.76061
[29] Davidson, P.A.2015Turbulence: An Introduction for Scientists and Engineers, 2nd edn. Oxford University Press. · Zbl 1315.76001
[30] Desjardins, T.R., et al.2019A platform for thin-layer Richtmyer-Meshkov at OMEGA and the NIF. High Energy Dens. Phys.33, 100705.
[31] Di Stefano, C.A., Malamud, G., Kuranz, C.C., Klein, S.R., Stoeckl, C. & Drake, R.P.2015Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime. Appl. Phys. Lett.106, 114103.
[32] Dimonte, G., Frerking, C.E., Schneider, M. & Remington, B.1996Richtmyer-Meshkov instability with strong radiatively driven shocks. Phys. Plasmas3, 614-630.
[33] Dimonte, G. & Remington, B.1993Richtmyer-Meshkov experiments on the Nova laser at high compression. Phys. Rev. Lett.70, 1806-1809.
[34] Dimotakis, P.E.2000The mixing transition in turbulent flows. J. Fluid Mech.409, 69-98. · Zbl 0986.76024
[35] Drake, R.P.2018High-Energy-Density Physics: Foundations of Inertial Fusion and Experimental Astrophysics, 2nd edn. Springer.
[36] Eckart, C.1948An analysis of the stirring and mixing processes in incompressible fluids. J. Mar. Res.7, 265-275.
[37] Ellison, C.L., et al.2018Development and modeling of a polar-direct-drive exploding pusher platform at the National Ignition Facility. Phys. Plasmas25, 072710.
[38] Feynman, R.P., Metropolis, N. & Teller, E.1949Equations of state of elements based on the generalized Fermi-Thomas theory. Phys. Rev.75, 1561-1573. · Zbl 0036.43007
[39] Gatski, T.B. & Bonnet, J.-P.2013Compressibility, Turbulence, and High Speed Flow, 2nd edn. Academic Press, Elsevier.
[40] Glendinning, S.G., et al.2003Effect of shock proximity on Richtmyer-Meshkov growth. Phys. Plasmas10, 1931-1936.
[41] Grinstein, F.F., Gowardhan, A.A. & Wachtor, A.J.2011Simulations of Richtmyer-Meshkov instabilities in planar shock-tube experiments. Phys. Fluids23, 034106.
[42] Grinstein, F.F., Margolin, L.G. & Rider, W.J.2007Implicit Large-Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press. · Zbl 1135.76001
[43] Hahn, M., Drikakis, D., Youngs, D.L. & Williams, R.J.R.2011Richtmyer-Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow. Phys. Fluids23, 046101.
[44] Haines, B.M., et al.2016Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments. Phys. Plasmas23, 072709.
[45] Haines, B.M., Grinstein, F.F., Welser-Sherrill, L. & Fincke, J.R.2013Simulations of material mixing in laser-driven reshock experiments. Phys. Plasmas20, 022309.
[46] Haines, B.M., et al.2020Observation of persistent species temperature separation in inertial confinement fusion mixtures. Nat. Commun.11, 1-9.
[47] Hansen, S.B., Isaacs, W.A., Sterne, P.A., Wilson, B.G., Sonnad, V. & Young, D.A.2006 Electrical conductivity calculations from the Purgatorio code. Tech. Rep. UCRL-PROC-218150. Lawrence Livermore National Laboratory. Available at: https://www.osti.gov.
[48] Haxhimali, T., Rudd, R.E., Cabot, W.H. & Graziani, F.R.2015Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures. Phys. Rev. E92, 053110.
[49] Hill, D.J., Pantano, C. & Pullin, D.I.2006Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock. J. Fluid Mech.557, 29-61. · Zbl 1094.76031
[50] Hirsch, C.2007Numerical Computation of Internal and External Flows, 2nd edn. Elsevier.
[51] Hirschfelder, J.O., Curtiss, C.F. & Bird, R.B.1954The Molecular Theory of Gases and Liquids. John Wiley & Sons. · Zbl 0057.23402
[52] Holmes, R.L., Dimonte, G., Fryxell, B., Gittings, M.L., Grove, J.W., Schneider, M., Sharp, D.H., Velikovich, A.L., Weaver, R.P. & Zhang, Q.1999Richtmyer-Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech.389, 55-79. · Zbl 0954.76026
[53] Houas, L. & Chemouni, I.1996Experimental investigation of Richtmyer-Meshkov instability in shock tube. Phys. Fluids8, 614-627.
[54] Hunter, J.D.2007Matplotlib: a 2D graphics environment. Comput. Sci. Engng9, 90-95.
[55] Huntington, C.M., Raman, K.S., Nagel, S.R., Maclaren, S.A., Baumann, T., Bender, J.D., Prisbrey, S.T., Simmons, L., Wang, P. & Zhou, Y.2020Split radiographic tracer technique to measure the full width of a high energy density mixing layer. High Energy Dens. Phys.35, 100733.
[56] Iglesias, C.A. & Rogers, F.J.1996Updated OPAL opacities. Astrophys. J.464, 943-953.
[57] Iglesias, C.A., Rogers, F.J. & Wilson, B.G.1992Spin-orbit interaction effects on the Rosseland mean opacity. Astrophys. J.387, 717-728.
[58] Incropera, F.P., Dewitt, D.P., Bergman, T.L. & Lavine, A.S.2007Fundamentals of Heat and Mass Transfer, 6th edn. John Wiley & Sons.
[59] Ishida, T., Davidson, P.A. & Kaneda, Y.2006On the decay of isotropic turbulence. J. Fluid Mech.564, 455-475. · Zbl 1100.76028
[60] Jacobs, J.W., Krivets, V.V., Tsiklashvili, V. & Likhachev, O.A.2013Experiments on the Richtmyer-Meshkov instability with an imposed, random initial perturbation. Shock Waves23, 407-413.
[61] Ji, J.-Y. & Held, E.D.2013Closure and transport theory for high-collisionality electron-ion plasmas. Phys. Plasmas20, 042114.
[62] Jones, E., et al.2001 SciPy: open source scientific tools for Python. Available at: https://www.scipy.org.
[63] Larsson, J., Bermejo-Moreno, I. & Lele, S.K.2013Reynolds- and Mach-number effects in canonical shock-turbulence interaction. J. Fluid Mech.717, 293-321. · Zbl 1284.76241
[64] Larsson, J. & Lele, S.K.2009Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids21, 126101. · Zbl 1183.76296
[65] Latini, M. & Schilling, O.2020A comparison of two- and three-dimensional single-mode reshocked Richtmyer-Meshkov instability growth. Physica D401, 132201. · Zbl 1453.76133
[66] Latini, M., Schilling, O. & Don, W.S.2007Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability. J. Comput. Phys.221, 805-836. · Zbl 1107.65338
[67] Lee, Y.T. & More, R.M.1984An electron conductivity model for dense plasmas. Phys. Fluids27, 1273-1286. · Zbl 0577.76117
[68] Van Leer, B.1979Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys.32, 101-136. · Zbl 1364.65223
[69] Leinov, E., Malamud, G., Elbaz, Y., Levin, L.A., Ben-Dor, G., Shvarts, D. & Sadot, O.2009Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions. J. Fluid Mech.626, 449-475. · Zbl 1171.76312
[70] Levermore, C.D. & Pomraning, G.C.1981A flux-limited diffusion theory. Astrophys. J.248, 321-334.
[71] Li, H., He, Z., Zhang, Y. & Tian, B.2019On the role of rarefaction/compression waves in Richtmyer-Meshkov instability with reshock. Phys. Fluids31, 054102.
[72] Livescu, D. & Ryu, J.2016Vorticity dynamics after the shock-turbulence interaction. Shock Waves26, 241-251.
[73] Lombardini, M., Hill, D.J., Pullin, D.I. & Meiron, D.I.2011Atwood ratio dependence of Richtmyer-Meshkov flows under reshock conditions using large-eddy simulation. J. Fluid Mech.670, 439-480. · Zbl 1225.76183
[74] Lombardini, M., Pullin, D.I. & Meiron, D.I.2012Transition to turbulence in shock-driven mixing: a Mach number study. J. Fluid Mech.690, 203-226. · Zbl 1241.76250
[75] Malamud, G., Di Stefano, C.A., Elbaz, Y., Huntington, C.M., Kuranz, C.C., Keiter, P.A. & Drake, R.P.2013A design of a two-dimensional, multimode RM experiment on OMEGA-EP. High Energy Dens. Phys.9, 122-131.
[76] Malamud, G., Leinov, E., Sadot, O., Elbaz, Y., Ben-Dor, G. & Shvarts, D.2014Reshocked Richtmyer-Meshkov instability: numerical study and modeling of random multi-mode experiments. Phys. Fluids26, 084107. · Zbl 1171.76312
[77] Managan, R.A.2015 Plasma physics approximations in Ares. Tech. Rep. LLNL-PROC-666110. Lawrence Livermore National Laboratory. Available at: https://www.osti.gov.
[78] Mcquarrie, D.A.2000Statistical Mechanics. University Science Books. · Zbl 1137.82301
[79] Meshkov, E.E.1969Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn.4, 101-104.
[80] Mikaelian, K.O.1989Turbulent mixing generated by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Physica D36, 343-357. · Zbl 0692.76052
[81] More, R.M.1991 Atomic physics in inertial confinement fusion. Tech. Rep. UCRL-84991 Rev. 1. Lawrence Livermore Laboratory. Available at: https://www.osti.gov.
[82] More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B.1988A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids31, 3059-3078. · Zbl 0654.76042
[83] Morgan, B.E. & Greenough, J.A.2016Large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder. Shock Waves26, 355-383.
[84] Morgan, B.E., Olson, B.J., Black, W.J. & Mcfarland, J.A.2018Large-eddy simulation and Reynolds-averaged Navier-Stokes modeling of a reacting Rayleigh-Taylor mixing layer in a spherical geometry. Phys. Rev. E98, 033111.
[85] Moses, E.I., Boyd, R.N., Remington, B.A., Keane, C.J. & Al-Ayat, R.2009The National Ignition Facility: ushering in a new age for high energy density science. Phys. Plasmas16, 041006.
[86] Murillo, M.S.2008Viscosity estimates of liquid metals and warm dense matter using the Yukawa reference system. High Energy Dens. Phys.4, 49-57.
[87] Nagel, S.R., et al.2017A platform for studying the Rayleigh-Taylor and Richtmyer-Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility. Phys. Plasmas24, 072704.
[88] Von Neumann, J. & Richtmyer, R.D.1950A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys.21, 232-237. · Zbl 0037.12002
[89] Oliphant, T.E.2006A guide to NumPy. Trelgol.
[90] Olson, B.J. & Greenough, J.2014Large eddy simulation requirements for the Richtmyer-Meshkov instability. Phys. Fluids26, 044103.
[91] Olson, G.L., Auer, L.H. & Hall, M.L.2000Diffusion, \(P_1\), and other approximate forms of radiation transport. J. Quant. Spectrosc. Radiat. Transfer64, 619-634.
[92] Peyser, T.A., Miller, P.L., Stry, P.E., Budil, K.S., Burke, E.W., Wojtowicz, D.A., Griswold, D.L., Hammel, B.A. & Phillion, D.W.1995Measurement of radiation-driven shock-induced mixing from nonlinear initial perturbations. Phys. Rev. Lett.75, 2332-2335.
[93] Poggi, F., Thorembey, M.-H. & Rogriguez, G.1998Velocity measurements in turbulent gaseous mixtures induced by Richtmyer-Meshkov instability. Phys. Fluids10, 2698-2700.
[94] Pomraning, G.C.1982Flux limiters and Eddington factors. J. Quant. Spectrosc. Radiat. Transfer27, 517-530.
[95] Pope, S.B.2000Turbulent Flows. Cambridge University Press. · Zbl 0966.76002
[96] Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P.1992Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn. Cambridge University Press. · Zbl 0778.65002
[97] Ramshaw, J.D.2004Approximate thermodynamic state relations in partially ionized gas mixtures. Phys. Plasmas11, 3572-3578.
[98] Ramshaw, J.D. & Cook, A.W.2014Approximate equations of state in two-temperature plasma mixtures. Phys. Plasmas21, 022706.
[99] Rayleigh, Lord1883Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc.14, 170-177. · JFM 15.0848.02
[100] Richtmyer, R.D.1960Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths13, 297-319.
[101] Richtmyer, R.D. & Morton, K.W.1967Difference Methods for Initial-Value Problems, 2nd edn. John Wiley & Sons. · Zbl 0155.47502
[102] Robey, H.F., Zhou, Y., Buckingham, A.C., Keiter, P., Remington, B.A. & Drake, R.P.2003The time scale for the transition to turbulence in a high Reynolds number, accelerated flow. Phys. Plasmas10, 614-622.
[103] Rogers, F.J. & Iglesias, C.A.1992Radiative atomic Rosseland mean opacity tables. Astrophys. J. Suppl.79, 507-568.
[104] Ryu, J. & Livescu, D.2014Turbulence structure behind the shock in canonical shock-vortical turbulence interaction. J. Fluid Mech.756, R1.
[105] Sagaut, P.2006Large Eddy Simulation for Incompressible Flows: An Introduction, 3rd edn. Springer. · Zbl 1091.76001
[106] Sagaut, P. & Cambon, C.2008Homogeneous Turbulence Dynamics. Cambridge University Press. · Zbl 1154.76003
[107] Schilling, O. & Latini, M.2010High-order WENO simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data. Acta Math. Sci.30B, 595-620. · Zbl 1228.76076
[108] Schilling, O., Latini, M. & Don, W.S.2007Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. Phys. Rev. E76, 026319. · Zbl 1146.76456
[109] Schroeder, D.V.2000An Introduction to Thermal Physics. Addison Wesley Longman.
[110] Sharp, D.H.1984An overview of the Rayleigh-Taylor instability. Physica D12, 3-18. · Zbl 0577.76047
[111] Sharp, R.W.Jr. & Barton, R.T.1981 HEMP advection model. Tech. Rep. UCID-17809 Rev. 1. Lawrence Livermore Laboratory. Available at: https://www.osti.gov.
[112] Stanton, L.G. & Murillo, M.S.2016Ionic transport in high-energy-density matter. Phys. Rev. E93, 043203.
[113] Sterne, P.A., Hansen, S.B., Wilson, B.G. & Isaacs, W.A.2007Equation of state, occupation probabilities and conductivities in the average atom Purgatorio code. High Energy Dens. Phys.3, 278-282.
[114] Taylor, G.I.1950The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. A201, 192-196. · Zbl 0038.12201
[115] Tennekes, H. & Lumley, J.L.1972A First Course in Turbulence. MIT Press. · Zbl 0285.76018
[116] Thornber, B.2007 Implicit large eddy simulation for unsteady multi-component compressible turbulent flows. PhD thesis, Cranfield University, Cranfield, UK.
[117] Thornber, B., Drikakis, D., Youngs, D.L. & Williams, R.J.R.2010The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability. J. Fluid Mech.654, 99-139. · Zbl 1193.76066
[118] Thornber, B., Drikakis, D., Youngs, D.L. & Williams, R.J.R.2011Growth of a Richtmyer-Meshkov turbulent layer after reshock. Phys. Fluids23, 095107.
[119] Thornber, B., Griffond, J., Bigdelou, P., Boureima, I., Ramaprabhu, P., Schilling, O. & Williams, R.J.R.2019Turbulent transport and mixing in the multimode narrowband Richtmyer-Meshkov instability. Phys. Fluids31, 096105.
[120] Thornber, B., et al.2017Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer-Meshkov instability: the \(\theta \)-group collaboration. Phys. Fluids29, 105107.
[121] Toro, E.F.2009Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer. · Zbl 1227.76006
[122] Tritschler, V.K., Olson, B.J., Lele, S.K., Hickel, S., Hu, X.Y. & Adams, N.A.2014On the Richtmyer-Meshkov instability evolving from a deterministic multimode planar interface. J. Fluid Mech.755, 429-462.
[123] Vetter, M. & Sturtevant, B.1995Experiments on the Richtmyer-Meshkov instability of an air/\(SF_6\) interface. Shock Waves4, 247-252.
[124] Viciconte, G., Gréa, B.-J., Godeferd, F.S., Arnault, P. & Clérouin, J.2019Sudden diffusion of turbulent mixing layers in weakly coupled plasmas under compression. Phys. Rev. E100, 063205.
[125] Wang, P., Raman, K.S., Maclaren, S.A., Huntington, C.M., Nagel, S.R., Flippo, K.A. & Prisbrey, S.T.2018Three-dimensional design simulations of a high-energy-density reshock experiment at the National Ignition Facility. Trans. ASME: J. Fluids Engng140, 041207.
[126] Weber, C.R., Clark, D.S., Cook, A.W., Busby, L.E. & Robey, H.F.2014aInhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation. Phys. Rev. E89, 053106.
[127] Weber, C.R., Haehn, N.S., Oakley, J.G., Rothamer, D.A. & Bonazza, R.2014bAn experimental investigation of the turbulent mixing transition in the Richtmyer-Meshkov instability. J. Fluid Mech.748, 457-487.
[128] Welser-Sherrill, L., Fincke, J., Doss, F., Loomis, E., Flippo, K., Offermann, D., Keiter, P., Haines, B. & Grinstein, F.2013Two laser-driven mix experiments to study reshock and shear. High Energy Dens. Phys.9, 496-499.
[129] White, F.M.2006Viscous Fluid Flow, 3rd edn. McGraw-Hill.
[130] Wilson, B., Sonnad, V., Sterne, P. & Isaacs, W.2006PURGATORIO—a new implementation of the INFERNO algorithm. J. Quant. Spectrosc. Radiat. Transfer99, 658-679.
[131] Wissink, A.M., Hornung, R.D., Kohn, S.R., Smith, S.S. & Elliott, N.2001 Large scale parallel structured AMR calculations using the SAMRAI framework. In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (SC2001). Association for Computing Machinery.
[132] Wong, M.L., Livescu, D. & Lele, S.K.2019High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with reshock. Phys. Rev. Fluids4, 104609.
[133] Young, D.A. & Corey, E.M.1995A new global equation of state model for hot, dense matter. J. Appl. Phys.78, 3748-3755.
[134] Youngs, D.L.1991Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability. Phys. Fluids A3, 1312-1320.
[135] Youngs, D.L.1994Numerical simulation of mixing by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Laser Part. Beams12, 725-750.
[136] Zel’dovich, Y.B. & Raizer, Y.P.2002Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Publications.
[137] Zhou, Y.2007Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations. Phys. Plasmas14, 082701.
[138] Zhou, Y.2017aRayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep.720-722, 1-136. · Zbl 1377.76016
[139] Zhou, Y.2017bRayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep.723-725, 1-160. · Zbl 1377.76017
[140] Zhou, Y. & Cabot, W.H.2019Time-dependent study of anisotropy in Rayleigh-Taylor instability induced turbulent flows with a variety of density ratios. Phys. Fluids31, 084106.
[141] Zhou, Y., Cabot, W.H. & Thornber, B.2016Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows. Phys. Plasmas23, 052712.
[142] Zhou, Y., Clark, T.T., Clark, D.S., Glendinning, S.G., Skinner, M.A., Huntington, C.M., Hurricane, O.A., Dimits, A.M. & Remington, B.A.2019Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas26, 080901.
[143] Zhou, Y., Groom, M. & Thornber, B.2020Dependence of enstrophy transport and mixed mass on dimensionality and initial conditions in the Richtmyer-Meshkov instability induced flows. Trans. ASME: J. Fluids Engng142, 121104.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.