×

\(k\)-hypergeometric series solutions to one type of non-homogeneous \(k\)-hypergeometric equations. (English) Zbl 1416.33014

Summary: In this paper, we expound on the hypergeometric series solutions for the second-order non-homogeneous \(k\)-hypergeometric differential equation with the polynomial term. The general solutions of this equation are obtained in the form of \(k\)-hypergeometric series based on the Frobenius method. Lastly, we employ the result of the theorem to find the solutions of several non-homogeneous \(k\)-hypergeometric differential equations.

MSC:

33C20 Generalized hypergeometric series, \({}_pF_q\)
34A30 Linear ordinary differential equations and systems

References:

[1] Euler, L.; ; Institutionum Calculi Integralis: Petropolis, Brazil 1769; .
[2] Coddington, E.A.; Levinson, N.; ; Theory of Ordinary Differential Equations: New York, NY, USA 1955; . · Zbl 0064.33002
[3] Teschl, G.; ; Ordinary Differential Equations and Dynamical Systems: Providence, RI, USA 2012; . · Zbl 1263.34002
[4] Kurilin, B.I.; Solution of the general Riccati equation with the aid of continued fractions; Radiophys. Quantum Electron.: 1968; Volume 11 ,640-641.
[5] Ku, Y.H.; Solution of the riccati equation by continued fractions; J. Frankl. Inst.: 1972; Volume 293 ,59-65. · Zbl 0271.34017
[6] Arnold, C.; Formal continued fractions solutions of the generalized second order Riccati equations, applications; Numer. Algorithms: 1997; Volume 15 ,111-134. · Zbl 0897.65047
[7] Elizalde, E.; Odintsov, S.D.; Romeo, A.; Bytsenko, A.; Zerbini, S.; ; Zeta Regularization Techniques with Applications: Singapore 1994; . · Zbl 1050.81500
[8] Elizalde, E.; Analysis of an inhomogeneous generalized Epstein-Hurwitz zeta function with physical applications; J. Math. Phys.: 1994; Volume 35 ,6100-6122. · Zbl 0870.11053
[9] Bordag, M.; Elizalde, E.; Kirsten, K.; Heat kernel coefficients of the Laplace operator on the D-dimensional ball; J. Math. Phys.: 1996; Volume 37 ,895-916. · Zbl 0862.58049
[10] Elizalde, E.; ; Ten Physical Applications of Spectral Zeta Functions: Berlin/Heidelberg, Germany 2012; . · Zbl 1250.81004
[11] Wallis, J.; ; Arithmetica Infinitorum (Latin): New York, NY, USA 2004; .
[12] Gauss, C.F.; Disquisitiones generales circa seriem infinitam 1 + α β 1 ⋅ γ x + α ( 1 + α ) β ( 1 + β ) 1 ⋅ 2 ⋅ γ ( 1 + γ ) x x + e c t . pars prior; Comm. Soc. Regiae Sci. Gottingensis Rec.: 1812; Volume 2 ,123-162.
[13] Kummer, E.E.; Über die hypergeometrische Reihe; J. Die Reine Angew. Math.: 1836; Volume 15 ,39-83. · ERAM 015.0528cj
[14] Riemann, B.; Beiträge zur Theorie der durch die Gauss’sche Reihe F(α, β, γ, x) darstellbaren Functionen; Aus dem Sieben. Band Abh. Königlichen Gesellschaft Wiss. zu Göttingen: 1857; Volume 7 ,3-22.
[15] Bailey, W.N.; Transformations of generalized hypergeometric series; Proc. Lond. Math. Soc.: 1929; . · JFM 55.0219.04
[16] Bailey, W.N.; ; Generalized Hypergeometric Series: Cambridge, UK 1935; . · JFM 61.0406.01
[17] Chaundy, T.W.; An extension of hypergeometric functions (I); Q. J. Math.: 1943; Volume 14 ,55-78. · Zbl 0063.00808
[18] Srivastava, H.M.; Karlsson, P.W.; ; Multiple Gaussian Hypergeometric Series: New York, NY, USA 1985; . · Zbl 0552.33001
[19] Whittaker, E.T.; Watson, G.N.; ; A Course of Modern Analysis: Cambridge, UK 1996; . · JFM 45.0433.02
[20] Beukers, F.; Gauss’ hypergeometric function; Prog. Math.: 2002; Volume 228 ,77-86.
[21] Gasper, G.; Rahman, M.; ; Basic Hypergeometric Series: Cambridge, UK 2004; . · Zbl 1129.33005
[22] Olde Daalhuis, A.B.; Hyperterminants I; J. Comput. Appl. Math.: 1996; Volume 76 ,255-264. · Zbl 0866.65011
[23] Olde Daalhuis, A.B.; Hyperterminants II; J. Comput. Appl. Math.: 1998; Volume 89 ,87-95. · Zbl 0910.34014
[24] Dwork, B.; Loeser, F.; Hypergeometric series; Jpn. J. Math.: 1993; Volume 19 ,81-129. · Zbl 0796.12005
[25] Chu, W.; Terminating hypergeometric 2F1(2)-series; Integral Transform. Spec. Funct.: 2011; Volume 22 ,91-96. · Zbl 1215.33001
[26] Yilmazer, R.; Inc, M.; Tchier, F.; Baleanu, D.; Particular solutions of the confluent hypergeometric differential equation by using the Nabla fractional calculus operator; Entropy: 2016; Volume 18 .
[27] Morita, T.; Sato, K.-I.; Solution of inhomogeneous differential equations with polynomial coefficients in terms of the Green’s function; Mathematics: 2017; Volume 5 . · Zbl 1393.34006
[28] Abramov, S.A.; Ryabenko, A.A.; Khmelnov, D.E.; Laurent, rational, and hypergeometric solutions of linear q-difference systems of arbitrary order with polynomial coefficients; Progr. Comput. Softw.: 2018; Volume 44 ,120-130. · Zbl 1459.39008
[29] Alfedeel, A.H.A.; Abebe, A.; Gubara, H.M.; A generalized solution of Bianchi type-V models with time-dependent G and Λ; Universe: 2018; Volume 4 .
[30] Díaz, R.; Teruel, C.; q,k-Generalized Gamma and Beta functions; J. Nonlinear Math. Phys.: 2005; Volume 12 ,118-134. · Zbl 1075.33010
[31] Díaz, R.; Pariguan, E.; On hypergeometric functions and Pochhammer k-symbol; Divulg. Mat.: 2007; Volume 15 ,179-192. · Zbl 1163.33300
[32] Krasniqi, V.; A limit for the k-gamma and k-beta function; Int. Math. Forum: 2010; Volume 5 ,1613-1617. · Zbl 1206.33005
[33] Krasniqi, V.; Inequalities and monotonicity for the ration of k-gamma functions; Sci. Magna: 2010; Volume 6 ,40-45.
[34] Kokologiannaki, C.G.; Properties and inequalities of generalized k-gamma, beta and zeta functions; Int. J. Contemp. Math. Sci.: 2010; Volume 5 ,653-660. · Zbl 1202.33003
[35] Mubeen, S.; Habibullah, G.M.; An integral representation of some k-hypergeometric functions; Int. Math. Forum: 2012; Volume 7 ,203-207. · Zbl 1251.33004
[36] Mubeen, S.; Habibullah, G.M.; k-fractional integrals and application; Int. J. Contemp. Math. Sci.: 2012; Volume 7 ,89-94. · Zbl 1248.33005
[37] Mubeen, S.; Solution of some integral equations involving conuent k-hypergeometricfunctions; Appl. Math.: 2013; Volume 4 ,9-11.
[38] Mubeen, S.; Rehman, A.; A Note on k-Gamma function and Pochhammer k-symbol; J. Inf. Math. Sci.: 2014; Volume 6 ,93-107.
[39] Mubeen, S.; Naz, M.A.; Rehman, G. Rahman. Solutions of k-hypergeometric differential equations; J. Appl. Math.: 2014; Volume 2014 ,1-13. · Zbl 1301.33021
[40] Mubeen, S.; Iqbal, S.; Some inequalities for the gamma k-function; Adv. Inequal. Appl.: 2015; Volume 2015 ,1-9.
[41] Rehman, A.; Mubeen, S.; Sadiq, N.; Shaheen, F.; Some inequalities involving k-gamma and k-beta functions with applications; J. Inequal. Appl.: 2014; Volume 2014 ,224. · Zbl 1309.33008
[42] Rahman, G.; Arshad, M.; Mubeen, S.; Some results on a generalized hypergeometric k-functions; Bull. Math. Anal. Appl.: 2016; Volume 8 ,6-77. · Zbl 1408.33009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.