×

Start-up flow in a pipe of a double distributed-order Maxwell fluid. (English) Zbl 1497.76005

Summary: The distributed-order model is equivalent to weighting the fractional-order model on a given interval. In this paper, a double time-distributed order Maxwell model is developed and formulated to study the characteristics of a start-up pipe flow. The numerical solution of the distributed-order governing equation is obtained by the finite difference method. In order to test the convergence of numerical solutions, the truncation error of the proposed numerical method be calculated. The characteristics of the flow and the effects of fractional parameters and weight functions on the velocity distribution are discussed in detail. By comparing the velocity distribution diagrams, it can be inferred that the distributed-order model controlled by the weight function can describe the memory and elastic properties of fluid more flexibly.

MSC:

76A10 Viscoelastic fluids
76M20 Finite difference methods applied to problems in fluid mechanics
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Moisés, G. V.L.; Alencar, L. S.; Naccache, M. F.; Frigaard, I. A., The influence of thixotropy in start-up flow of yield stress fluids in a pipe, J. Petrol. Sci. Eng., 171, 794-807 (2018)
[2] Chala, G. T.; Sulaiman, S. A.; Japper-Jaafar, A., Flow start-up and transportation of waxy crude oil in pipelines-A review, J. Non-Newton. Fluid., 251, 69-87 (2018)
[3] Tong, D., Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe, Sci. China Ser. G., 48, 485 (2005)
[4] Liebig, W. V.; Jackstadt, A.; Sessner, V.; Weidenmann, K. A.; Kärger, L., Frequency domain modelling of transversely isotropic viscoelastic fibre-reinforced plastics, Compos. Sci. Technol., 180, 101-110 (2019)
[5] Sadiq, N.; Imran, M.; Fetecau, C.; Ahmed, N., Rotational motion of fractional maxwell fluids in a circular duct due to a time-dependent couple, Bound. Value. Probl., 2019, 20 (2019) · Zbl 1524.76020
[6] Kimura, M.; Notsu, H.; Tanaka, Y.; Yamamoto, H., The gradient flow structure of an extended maxwell viscoelastic model and a structure-preserving finite element scheme, J. Sci. Comput., 78, 1111-1131 (2019) · Zbl 1461.35012
[7] Moosavi, R.; Moltafet, R.; Shekari, Y., Analysis of viscoelastic non-Newtonian fluid over a vertical forward-facing step using the Maxwell fractional model, Appl. Math. Comput., 401, Article 126119 pp. (2021) · Zbl 1508.76010
[8] Yang, D.; Zhu, K. Q., Start-up flow of a viscoelastic fluid in a pipe with a fractional Maxwell’s model, Comput. Math. Appl., 60, 2231-2238 (2010) · Zbl 1205.76038
[9] Bagley, R. L.; Torvik, P. J., A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27, 201-210 (1983) · Zbl 0515.76012
[10] Ali, F.; Iftikhar, M.; Khan, I.; Sheikh, N. A., Atangana-Baleanu fractional model for electro-osmotic flow of viscoelastic fluids, Chaos Solitons Fractals, 124, 125-133 (2019) · Zbl 1448.76182
[11] Awad, E., On the time-fractional cattaneo equation of distributed order, Physica A, 518, 210-233 (2019) · Zbl 1514.35454
[12] Chen, X. H.; Yang, W. D.; Zhang, X. R.; Liu, F. W., Unsteady boundary layer flow of viscoelastic MHD fluid with a double fractional maxwell model, Appl. Math. Lett., 95, 143-149 (2019) · Zbl 1448.76017
[13] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M., Retarding sub- and accelerating super-diffusion governed by distributed order fractional diffusion equations, Phys. Rev. E, 66, Article 046129 pp. (2002)
[14] Caputo, M., Elasticità E Dissipazione (1969), Zanichelli: Zanichelli Bologna
[15] Duan, J. S.; Chen, L., Oscillatory shear flow between two parallel plates for viscoelastic constitutive model of distributed-order derivative, HFF, 30, 1137-1148 (2020)
[16] Muñoz Vázquez, A. J.; Fernández-Anaya, G.; Sánchez-Torres, J. D.; Meléndez-Vázquez, F., Predefined-time control of distributed-order systems, Nonlinear Dynam., 103, 2689-2700 (2021) · Zbl 1517.93014
[17] Yin, B. L.; Liu, Y.; Li, H.; Zhang, Z. H., Approximation methods for the distributed order calculus using the convolution quadrature, Discrete Contin. Dyn. Syst. Ser. B, 26, 3, 1447-1468 (2021) · Zbl 1472.65034
[18] Qiao, Y. L.; Wang, X. P.; Xu, H. Y.; Qi, H. T., Numerical analysis for viscoelastic fluid flow with distributed/variable order time fractional Maxwell constitutive models, Appl. Math. Mech.-Engl. Ed., 42, 1771-1786 (2021) · Zbl 1515.76012
[19] Friedrich, C., Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheola Acta., 30, 151-158 (1991)
[20] Fan, W. P.; Liu, F. W., A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain, Appl. Math. Lett., 77, 114-121 (2018) · Zbl 1380.65260
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.