×

Observability of laminar bidimensional fluid flows seen as autonomous chaotic systems. (English) Zbl 1429.37051

Summary: Lagrangian transport in the dynamical systems approach has so far been investigated disregarding the connection between the whole state space and the concept of observability. Key issues such as the definitions of Lagrangian and chaotic mixing are revisited under this light, establishing the importance of rewriting nonautonomous flow systems derived from a stream function in autonomous form, and of not restricting the characterization of their dynamics in subspaces. The observability of Lagrangian chaos from a reduced set of measurements is illustrated with two canonical examples: the Lorenz system derived as a low-dimensional truncation of the Rayleigh-Bénard convection equations and the driven double-gyre system introduced as a kinematic model of configurations observed in the ocean. A symmetrized version of the driven double-gyre model is proposed.
©2019 American Institute of Physics

MSC:

37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

References:

[1] Batchelor, G. K., An Introduction to Fluid Dynamics (2000) · Zbl 0152.44402
[2] Wiggins, S.; Ottino, J. M., Foundations of chaotic mixing, Philos. Trans. R. Soc. London, 362, 937-970 (2004) · Zbl 1069.76502
[3] Ottino, J. M., Mixing, chaotic advection and turbulence, Annu. Rev. Fluid Mech., 22, 207-253 (1990)
[4] Bohr, T.; Jensen, M. H.; Paladin, G.; Vulpiani, A., Dynamical Systems Approach to Turbulence (2005) · Zbl 1220.76002
[5] Ménard, O.; Letellier, C.; Maquet, J.; Sceller, L. L.; Gouesbet, G., Analysis of a non-synchronized sinusoidally driven dynamical system, Int. J. Bifurcat. Chaos, 10, 1759-1772 (2000) · Zbl 1090.34557
[6] Carrassi, A.; Ghil, M.; Trevisan, A.; Uboldi, F., Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system, Chaos, 18, 023112 (2008) · Zbl 1307.34064
[7] Ghil, M., The compatible balancing approach to initialization, and four-dimensional data assimilation, Tellus, 32, 198-206 (1980)
[8] Ghil, M.; Malanotte-Rizzoli, P., Data Assimilation in Meteorology and Oceanography, 141-266 (1991)
[9] Ghil, M., Advances in sequential estimation for atmospheric and oceanic flows, J. Meteorolog. Soc. Japan Ser. II, 75, 289-304 (1997)
[10] Hermann, R.; Krener, A., Nonlinear controllability and observability, IEEE Trans. Automat. Contr., 22, 728-740 (1977) · Zbl 0396.93015
[11] Letellier, C.; Aguirre, L. A.; Maquet, J., Relation between observability and differential embeddings for nonlinear dynamics, Phys. Rev. E, 71, 066213 (2005)
[12] Bergé, P.; Pomeau, Y.; Vidal, C., L’ordre dans le Chaos—Vers une Approche Déterministe de la Turbulence (1997)
[13] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141 (1963) · Zbl 1417.37129
[14] Yang, H.; Liu, Z., Chaotic transport in a double gyre ocean, Geophys. Res. Lett., 21, 545-548 (1994)
[15] Poje, A. C.; Haller, G., Geometry of cross-stream mixing in a double-gyre ocean model, J. Phys. Oceanogr., 29, 1649-1665 (1999)
[16] Simonnet, E.; Ghil, M.; Dijkstra, H., Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation, J. Marine Res., 63, 931-956 (2005)
[17] Matsuura, T.; Fujita, M., Two different aperiodic phases of wind-driven ocean circulation in a double-gyre, two-layer shallow-water model, J. Phys. Oceanogr., 36, 1265-1286 (2006)
[18] Shadden, S. C.; Lekien, F.; Marsden, J. E., Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 212, 271-304 (2005) · Zbl 1161.76487
[19] Priyankara, K. G. D. S.; Balasuriya, S.; Bollt, E., Quantifying the role of folding in nonautonomous flows: The unsteady double-gyre, Int. J. Bifurcat. Chaos, 27, 1750156 (2017) · Zbl 1381.37034
[20] Lipinski, D.; Mohseni, K., A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures, Chaos, 20, 017504 (2010) · Zbl 1311.76034
[21] Allshouse, M. R.; Peacock, T., Lagrangian based methods for coherent structure detection, Chaos, 25, 097617 (2015)
[22] Pratt, K. R.; Meiss, J. D.; Crimaldi, J. P., Reaction enhancement of initially distant scalars by Lagrangian coherent structures, Phys. Fluids, 27, 035106 (2015)
[23] Williams, M. O.; Rypina, I. I.; Rowley, C. W., Identifying finite-time coherent sets from limited quantities of Lagrangian data, Chaos, 25, 087408 (2015) · Zbl 1374.37121
[24] Aref, H.; Blake, J. R.; Budišić, M.; Cardoso, S. S. S.; Cartwright, J. H. E.; Clercx, H. J. H.; El Omari, K.; Feudel, U.; Golestanian, R.; Gouillart, E.; van Heijst, G. F.; Krasnopolskaya, T. S.; Le Guer, Y.; MacKay, R. S.; Meleshko, V. V.; Metcalfe, G.; Mezić, I.; de Moura, A. P. S.; Piro, O.; Speetjens, M. F. M.; Sturman, R.; Thiffeault, J.-L.; Tuval, I., Frontiers of chaotic advection, Rev. Mod. Phys., 89, 025007 (2017)
[25] Lamb, H., Hydrodynamics (1994) · JFM 26.0868.02
[26] Hénon, M., Sur la topologie des lignes de courant dans un cas particulier, C. R. Acad. Sci., 262, 312-314 (1966)
[27] Aref, H., Stirring by chaotic advection, J. Fluid Mech., 143, 1-21 (1984) · Zbl 0559.76085
[28] Kantz, H.; Schreiber, T., Nonlinear Time Series Analysis (2010)
[29] Gilmore, R.; Lefranc, M., The Topology of Chaos (2003)
[30] Jeffreys, H., The stability of a layer of fluid heated below, Philos. Mag. VII, 2, 833-844 (1926) · JFM 52.0862.01
[31] Chandrasekhar, S., Hydrodynamics and Hydromagnetic Stability (1961) · Zbl 0142.44103
[32] Letellier, C.; Dutertre, P.; Gouesbet, G., Characterization of the Lorenz system, taking into account the equivariance of the vector field, Phys. Rev. E, 49, 3492-3495 (1994)
[33] Massimo Falcioni, G. P.; Vulpiani, A., Regular and chaotic motion of fluid particles in a two-dimensional fluid, J. Phys. A, 21, 3451-3462 (1988) · Zbl 0653.76036
[34] Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S., Geometry from a time series, Phys. Rev. Lett., 45, 712-716 (1980)
[35] Takens, F., Detecting strange attractors in turbulence, Lect. Notes Math., 898, 366-381 (1981) · Zbl 0513.58032
[36] Sendiña Nadal, I.; Boccaletti, S.; Letellier, C., Observability coefficients for predicting the class of synchronizability from the algebraic structure of the local oscillators, Phys. Rev. E, 94, 042205 (2016)
[37] Letellier, C.; Sendiña-Nadal, I.; Bianco-Martinez, E.; Baptista, M. S., A symbolic network-based nonlinear theory for dynamical systems observability, Sci. Rep., 8, 3785 (2018)
[38] Solomon, T. H.; Gollub, J. P., Chaotic particle transport in time-dependent Rayleigh-Bénard convection, Phys. Rev. A, 38, 6280-6286 (1988)
[39] Couliette, C.; Wiggins, S., Intergyre transport in a wind-driven, quasigeostrophic double gyre: An application of lobe dynamics, Nonlinear Process. Geophys., 7, 59-85 (2000)
[40] Dijkstra, H. A.; Ghil, M., Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach, Rev. Geophys., 43, RG3002 (2005)
[41] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003) · Zbl 1027.37002
[42] Letellier, C.; Gilmore, R., Covering dynamical systems: Twofold covers, Phys. Rev. E, 63, 016206 (2000)
[43] Letellier, C.; Aguirre, L. A., Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables, Chaos, 12, 549-558 (2002) · Zbl 1080.37600
[44] Kailath, T., Linear Systems, Information and System Sciences Series (Prentice-Hall, 1980). · Zbl 0454.93001
[45] Aguirre, L. A., Controllability and observability of linear systems: Some noninvariant aspects, IEEE Trans. Educ., 38, 33-39 (1995)
[46] Letellier, C.; Maquet, J.; Sceller, L. L.; Gouesbet, G.; Aguirre, L. A., On the non-equivalence of observables in phase-space reconstructions from recorded time series, J. Phys. A, 31, 7913-7927 (1998) · Zbl 0936.81014
[47] Letellier, C.; Aguirre, L. A., Symbolic observability coefficients for univariate and multivariate analysis, Phys. Rev. E, 79, 066210 (2009)
[48] Aguirre, L. A.; Portes, L. L.; Letellier, C., Structural, dynamical and symbolic observability: From dynamical systems to networks, PLoS One, 13, e0206180 (2018)
[49] Bianco-Martinez, E.; Baptista, M. S.; Letellier, C., Symbolic computations of nonlinear observability, Phys. Rev. E, 91, 062912 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.