×

Efficient models for correlated data via convolutions of intrinsic processes. (English) Zbl 1071.62089

Summary: Gaussian processes (GP) have proven to be useful and versatile stochastic models in a wide variety of applications including computer experiments, environmental monitoring, hydrology and climate modeling. A GP model is determined by its mean and covariance functions. In most cases, the mean is specified to be a constant, or some other simple linear function, whereas the covariance function is governed by a few parameters. A Bayesian formulation is attractive as it allows for formal incorporation of uncertainty regarding the parameters governing the GP. However, estimation of these parameters can be problematic. Large datasets, posterior correlation and inverse problems can all lead to difficulties in exploring the posterior distribution.
We propose an alternative model which is quite tractable computationally – even with large datasets or indirectly observed data – while still maintaining the flexibility and adaptiveness of traditional GP models. This model is based on convolving simple Markov random fields with a smoothing kernel. We consider applications in hydrology and aircraft prototype testing.

MSC:

62M99 Inference from stochastic processes
62F15 Bayesian inference
60G15 Gaussian processes
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P30 Applications of statistics in engineering and industry; control charts
62M40 Random fields; image analysis

Software:

spBayes
Full Text: DOI

References:

[1] Banerjee S, Hierarchical modeling and analysis or spatial data (2003) · doi:10.1201/9780203487808
[2] Barry RP, Journal of Agricultural, Biological, and Environmental Statistics 1 pp 297– (1996) · doi:10.2307/1400521
[3] Besag J, Biometrika 82 pp 733– (1995)
[4] Besag J, Annals of the Institute of Statistical Mathematics 43 pp 1– (1991) · Zbl 0760.62029 · doi:10.1007/BF00116466
[5] Brownie C, Agronomy Journal 85 pp 1244– (1994) · doi:10.2134/agronj1993.00021962008500060028x
[6] Calder CA, Case studies in bayesian statistics pp 165– (2002) · doi:10.1007/978-1-4612-2078-7_6
[7] Cleveland WS, Journal of the American Statistical Association 74 pp 829– (1979) · doi:10.1080/01621459.1979.10481038
[8] Craig PS, Journal of the American Statistical Association 96 pp 717– (2001) · Zbl 1017.62019 · doi:10.1198/016214501753168370
[9] Cressie NAC, Statistics for spatial data (1993)
[10] Dempster AP, Applied Statistics 33 pp 203– (1984) · Zbl 0568.62067 · doi:10.2307/2347446
[11] Diggle PJ, Applied Statistics 47 pp 299– (1998)
[12] Fuentes M, A new class of nonstationary spatial models (2001)
[13] Gilks WR, Markov chain Monte Carlo in practice (1996)
[14] Higdon D, Quantitative methods for current environmental issues pp 37– (2002) · doi:10.1007/978-1-4471-0657-9_2
[15] Higdon D, SIAM Journal of Scientific Computing 26 pp 448– (2004) · Zbl 1072.62018 · doi:10.1137/S1064827503426693
[16] Higdon D, Bayesian Statistics 7 pp 181– (2003)
[17] Host G, Journal of the American Statistical Association 90 pp 853– (1995)
[18] Ickstadt K, Bayesian Statistics 6 pp 323– (1999)
[19] Isaaks EH, Applied geostatistics (1989)
[20] James AL, Water Resources Research 33 pp 2621– (1997) · doi:10.1029/97WR02589
[21] Jin M, Water Resources Research 31 pp 1201– (1995) · doi:10.1029/95WR00174
[22] Kennedy MC, Journal of the Royal Statistical Society: Series B 63 pp 425– (2001) · Zbl 1007.62021 · doi:10.1111/1467-9868.00294
[23] King MJ, In Situ 22 pp 91– (1998)
[24] Lee H, Technometrics 44 pp 230– (2002) · doi:10.1198/004017002188618419
[25] O’Hagan A, Journal of Statistical Planning and Inference 29 pp 145– (1991) · Zbl 0850.62437 · doi:10.1016/0378-3758(92)90129-G
[26] Oliver DS, Mathematical Geology 29 pp 61– (1997) · doi:10.1007/BF02769620
[27] Royle, J. A., Case Studies in Bayesian Statistics, IV pp 367– (1999) · doi:10.1007/978-1-4612-1502-8_11
[28] Sacks J, Statistical Science 4 pp 409– (1989) · Zbl 0955.62619 · doi:10.1214/ss/1177012413
[29] Sampson PD, Journal of the American Statistical Association 87 pp 108– (1992) · doi:10.1080/01621459.1992.10475181
[30] Schmidt AM, Journal of the Royal Statistical Society: Series B 65 pp 745– (2003)
[31] Stein ML, Interpolation of spatial data. some theory for kriging (1999) · doi:10.1007/978-1-4612-1494-6
[32] Thiébaux HJ, Spatial objective analysis with applications in atmospheric science (1987)
[33] Vasco DW, Society of Petroleum Engineers 1998 Annual Technical Conference
[34] Wikle CK, Environmental and Ecological Statistics 5 pp 117– (1998) · doi:10.1023/A:1009662704779
[35] Xue G, Society of Petroleum Engineers 1996 Annual Technical Conference
[36] Yeh WW, Water Resources Research 22 pp 95– (1986) · doi:10.1029/WR022i002p00095
[37] Yoon S, SPE=EPA Exploration and Production Environmental Conference
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.