×

A multiscale hybrid method for Darcy’s problems using mixed finite element local solvers. (English) Zbl 1441.76058

Summary: Multiscale Hybrid Mixed (MHM) method refers to a numerical technique targeted to approximate systems of differential equations with strongly varying solutions. For fluid flow, normal fluxes (multiplier) over macro element boundaries, and coarse piecewise constant potential approximations in each macro element are computed (upscaling). Then, small details are resolved by local problems, using fine representations inside the macro elements, setting the multiplier as Neumann boundary conditions (downscaling). In this work a variant of the method is developed, denoted by MHM- \( \mathbf{H}(\text{div})\), adopting mixed finite elements at the downscaling stage, instead of continuous finite elements used in all previous publications of the method. Thus, this alternative MHM method inherits improvements typical of mixed methods, as better flux accuracy, and local mass conservation at the micro scale level inside the macro elements which are important properties for multi-phase flows in rough heterogeneous media. Different two-scale stable space settings are considered. Vector face functions are supposed to have normal components restricted to a given finite dimensional trace space defined over the macro element boundaries. In each macro element, the internal flux components, with vanishing normal traces, and the potential approximations, may be enriched in different extents: with respect to internal mesh size, internal polynomial degree, or both, the choice being determined by the problem at hands. A unified general error analysis of the MHM-\( \mathbf{H}(\text{div})\) method is presented for all these two-scale space scenarios. Both MHM versions are compared for 2D test problems, with smooth solutions, for convergence rates verification, and for Darcy’s flow in heterogeneous media. MHM-\( \mathbf{H}(\text{div}) 3\) D simulations are presented for a known singular Darcy’s solution, using adaptive macro partitions, and for an oscillatory permeability scenario.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

References:

[1] Aarnes, J. E., On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, Multiscale Model. Simul., 2, 3, 421-439 (2004) · Zbl 1181.76125
[2] Harder, C.; Paredes, D.; Valentin, F., A family of multiscale hybrid-mixed finite element methods for the darcy equation with rough coefficients, J. Comput. Phys., 245, 107-130 (2013) · Zbl 1349.76214
[3] Araya, R.; Harder, C.; Paredes, D.; Valentin, F., Multiscale hybrid-mixed method, SIAM J. Numer. Anal., 51, 6, 3505-3531 (2013) · Zbl 1296.65152
[4] Harder, C.; Valentin, F., Foundations of the MHM method, (Barrenechea, G. R.; Brezzi, F.; Cangiani, A.; Georgoulis, E. H., Building Bridges: Connections and Challenges in Modern Approaches To Numerical Partial Differential Equations (2016), Springer International Publishing: Springer International Publishing Cham), 401-433 · Zbl 1357.65261
[5] Paredes, D.; Valentin, F.; Versieux, H. M., On the robustness of multiscale hybrid-mixed methods, Math. Comp., 86, 304, 525-548 (2016) · Zbl 1355.65159
[6] Harder, C.; Paredes, D.; Valentin, F., On a multiscale hybrid-mixed method for advective-reactive dominated problems with heterogeneous coefficients, Multiscale Model. Simul., 13, 2, 491-518 (2015) · Zbl 1317.65222
[7] Harder, C.; Madureira, A. L.; Valentin, F., A hybrid-mixed method for elasticity, ESAIM: Math. Model. Numer. Anal., 50, 2, 311-336 (2016) · Zbl 1381.74192
[8] Araya, R.; Harder, C.; Poza, A. H.; Valentin, F., Multiscale hybrid-mixed method for the Stokes and brinkman equations – the method, Comput. Methods Appl. Mech. Engrg., 324, 29-53 (2017) · Zbl 1439.76046
[9] S. Lanteri, D. Paredes, C. Scheid, F. Valentin, The multiscale hybrid-mixed method for the Maxwell equations in heterogeneous media, Tech. Rep., working paper or preprint (Nov. 2016) URL https://hal.inria.fr/hal-01393011; S. Lanteri, D. Paredes, C. Scheid, F. Valentin, The multiscale hybrid-mixed method for the Maxwell equations in heterogeneous media, Tech. Rep., working paper or preprint (Nov. 2016) URL https://hal.inria.fr/hal-01393011
[10] Arbogast, T.; Pencheva, G.; Wheeler, M. F.; Yotov, I., A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6, 1, 319-346 (2007) · Zbl 1322.76039
[11] Wheeler, M. F.; Xue, G.; Yotov, I., A multiscale mortar multipoint flux mixed finite element method, ESAIM: Math. Model. Numer. Anal., 46, 4, 759-796 (2012) · Zbl 1275.65082
[12] Francisco, A.; Ginting, V.; Pereira, F.; Rigelo, J., Design and implementation of a multiscale mixed method based on a nonoverlapping domain decomposition procedure, Math. Comput. Simulation, 99, 125-138 (2014) · Zbl 1533.65226
[13] Arbogast, T., Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems, SIAM J. Numer. Anal., 42, 2, 576-598 (2004) · Zbl 1078.65092
[14] Cockburn, B., Static condensation, hybridization, and the devising of the hdg methods, (Barrenechea, G. R.; Brezzi, F.; Cangiani, A.; Georgoulis, E. H., Building Bridges: Connections and Challenges in Modern Approaches To Numerical Partial Differential Equations (2016), Springer International Publishing: Springer International Publishing Cham), 129-177 · Zbl 1357.65256
[15] Di Pietro, D. A.; Ern, A.; Lemaire, S., A review of hybrid high-order methods: Formulations, computational aspects, comparison with other methods, (Barrenechea, G. R.; Brezzi, F.; Cangiani, A.; Georgoulis, E. H., Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations (2016), Springer International Publishing: Springer International Publishing Cham), 205-236 · Zbl 1357.65258
[16] Hlepas, G.; Truster, T.; Masud, A., A heterogeneous modeling method for porous media flows, Internat. J. Numer. Methods Fluids, 75, 7, 487-518 (2014) · Zbl 1455.76181
[17] Efendiev, Y.; Lazarov, R.; Shi, K., A multiscale HDG method for second order elliptic equations. part i. polynomial and homogenization-based multiscale spaces, SIAM J. Numer. Anal., 53, 1, 342-369 (2015) · Zbl 1322.65105
[18] Cicuttin, M.; Ern, A.; Lemaire, S., A hybrid high-order method for highly oscillatory elliptic problems, Comput. Methods Appl. Math. (2018), URL https://hal.archives-ouvertes.fr/hal-01467434
[19] Arnold, D. N.; Brezzi, F., Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, ESAIM: Math. Model. Numer. Anal., 19, 1, 7-32 (1985) · Zbl 0567.65078
[20] Devloo, P. R.B.; Bravo, C. M.A. A.; Rylo, E. C., Systematic and generic construction of shape functions for p-adaptive meshes of multidimensional finite elements, Comput. Methods Appl. Mech. Engrg., 198, 21-26, 1716-1725 (2009) · Zbl 1227.65112
[21] Devloo, P. R.B.; Durán, O.; Gomes, S. M.; Shauer, N., Mixed finite element approximations based on 3d hp-adaptive curved meshes with two types of \(H(\text{div})\)-conforming spaces, Internat. J. Numer. Methods Engrg., 113, 7, 1045-1060 (2017) · Zbl 07874741
[22] Castro, D. A.; Devloo, P. R.; Farias, A. M.; Gomes, S. M.; de Siqueira, D.; Durán, O., Three dimensional hierarchical mixed finite element approximations with enhanced primal variable accuracy, Comput. Methods Appl. Mech. Engrg., 306, 479-502 (2016) · Zbl 1436.65174
[23] Devloo, P. R.; Farias, A. M.; Gomes, S. M., A remark concerning divergence accuracy order for h(div)-conforming finite element flux approximations, Comput. Math. Appl. (2018)
[24] Falk, R. S.; Gatto, P.; Monk, P., Hexahedral h(div) and h(curl) finite elements, ESAIM: Math. Model. Numer. Anal., 45, 1, 115-143 (2010) · Zbl 1270.65066
[25] Demkowicz, L.; Monk, P.; Vardapetvan, L.; Rachowicz, W., De rham diagram for hp finite element spaces, Comput. Math. Appl., 39, 29-38 (2000) · Zbl 0955.65084
[26] Cockburn, B.; Gopalakrishnan, J., Error analysis of variable degree mixed methods for elliptic problems via hybridization, Math. Comp., 74, 252, 1653-1678 (2005) · Zbl 1078.65093
[27] Boffi, D.; Brezzi, F.; Fortin, M., (Mixed Finite Element Methods and Applications. Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics (2013), Springer Berlin Heidelberg) · Zbl 1277.65092
[28] Nédélec, J. C., A new family of mixed finite elements in \(R^3\), Numer. Math., 50, 1, 57-81 (1986) · Zbl 0625.65107
[29] Arnold, D. N.; Boffi, D.; Falk, R. S., Quadrilateral h(div) finite elements, SIAM J. Numer. Anal., 42, 6, 2429-2451 (2005) · Zbl 1086.65105
[30] Vohralík, M.; Wohlmuth, B. I., Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods, Math. Models Methods Appl. Sci., 23, 05, 803-838 (2013) · Zbl 1264.65198
[31] Siqueira, D. D.; Devloo, P. R.; Gomes, S. M., A new procedure for the construction of hierarchical high order hdiv and hcurl finite element spaces, J. Comput. Appl. Math., 240, 204-214 (2013) · Zbl 1255.65209
[32] Song, C.; Wolf, J. P., The scaled boundary finite element method-alias consistent infinitesimal finite element cell method-for diffusion, Internat. J. Numer. Methods Engrg., 45, 10, 1403-1431 (1999) · Zbl 1062.74627
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.