×

Substitutive systems and a finitary version of Cobham’s theorem. (English) Zbl 1499.11157

Let \(\mathcal{A}\) be a finite alphabet, \(\mathcal{A}^*\) the set of finite words over \(\mathcal{A}\) and \(\mathcal{A}^\omega\) the set of sequences with values in \(\mathcal{A}\). Cobham’s theorem states that a sequence is simultaneously automatic with respect to multiplicatively independent bases if and only if it is ultimately periodic.
A purely substitutive sequence is a fixed point of a substitution \(\varphi: \mathcal{A} \rightarrow \mathcal{A}^*\) and substitutive if it arises from a purely substitutive sequence over some alphabet \(\mathcal{B}\) after applying a coding \(\pi: \mathcal{B} \rightarrow \mathcal{A}\). A dynamical system \(X \subseteq \mathcal{A}^\omega\) is substitutive if it arises as the orbit closure of a substitutive sequence and transitive if has a point with a dense orbit. A standing assumption is that the length of the words \(\varphi^n(a)\) tends to infinity with \(n\) for all \(a\in\mathcal{A}\).
A substitution \(\varphi\) is called primitive if there is an integer \(n\ge 1\) such that for any \(a,b\in \mathcal{A}\) the letter \(a\) appears in \(\varphi^n(b)\). Such systems have been extensively studied. A substitution is of constant length if \(\vert \varphi(a)\vert =k\) for each \(a\in\mathcal{A}\). A fixed point of a substitution of constant length \(k\) is called purely \(k\)-automatic. A \(k\)-automatic sequence is the image of a purely \(k\)-automatic sequence under a coding.
The first major result of the paper is that every transitive subsystem of a substitutive system is substitutive. Further, every transitive subsystem of a \(k\)-automatic system is \(k\)-automatic. A more precise version of this result describes generators for such subsystems.
The second major result is an application of the first to give a finitary version of Cobham’s theorem and a complete characterisation of the sets of words that can appear as common factors of two automatic sequences defined over multiplicatively independent bases. Namely, let \(k,l\ge 2\) be multiplicatively independent integers and let \(U\subset \mathcal{A}^*\). The following conditions are equivalent:
(1) There is a \(k\)-automatic sequence \(x\) and an \(l\)-automatic sequence \(y\) such that \(U\) is the set of common factors of \(x\) and \(y\).
(2) The set \(U\) is a finite nonempty union of sets of the form \(\mathcal{L}(^{\omega} vuw^\omega)\), where \(u,v,w\) are (possibly empty) words over \(\mathcal{A}\) and \(^{\omega} vuw^\omega = \cdots vvvuwww\cdots\) and \(\mathcal{L}(y)\) denotes the set of factors of a word or sequence \(y\).
The first step in the proof is to understand the structure of sets of the form \(S_x=\{n\ge0 \mid vU^nw \;\;{\mathrm{ is a factor of }} x\}\) for fixed nonempty words \(u,v,w\), when \(x\) is a \(k\)-automatic sequence. Assume \(v\) is not a suffix of \(u^n\) and \(w\) is not a prefix of \(u^n\) for any integer \(n\). Then \(S\) is a finite union of sets of the form \(\{ak^{mn}+b \mid n\ge0\}\) for some \(a,b\in\mathbb{Q}\) and \(m\in\mathbb{N}\) with \(a,b\ge0, a+b\in\mathbb{Z}\) and \((k^m-1)a\in\mathbb{Z}\). Let \(k,l\ge2\) be multiplicatively independent integers and let \(x\) be a \(k\)-automatic sequence and \(y\) an \(l\)-automatic sequence. Then \(vu^nw\) is a common factor of \(x\) and \(y\) only for finitely many \(n\). This follows from the form of the solutions in the first result because the S-unit equation \(ak^n+bl^m=c\) has only finitely many integer solutions \(m,n\). Thus far, the proof is effective.
In dealing with general sequences, one step requires a bound on the rank of common factors and this step uses a compactness argument on \(\mathcal{A}^\omega\) and is not effective. As the authors remark, it would be interesting to explore whether there is an effective proof. The authors also discuss a range of potential extensions of Cobham’s theorem inspired by results on the recognisability of subsets of integers and algebraic characterisations of automaticity.

MSC:

11B85 Automata sequences
37B10 Symbolic dynamics
68R15 Combinatorics on words
37A44 Relations between ergodic theory and number theory
37B51 Multidimensional shifts of finite type
68Q45 Formal languages and automata

References:

[1] Adamozewski, B.; Bell, J. P., Function fields in positive characteristic: expansions and Cobham’s theorem, J. Algebra, 319, 2337-2350 (2008) · Zbl 1151.11060 · doi:10.1016/j.jalgebra.2007.06.039
[2] Adamczewski, B.; Bell, J. P., An analogue of Cobham’s theorem for fractals, Trans. Amer. Math. Soc., 363, 4421-4442 (2011) · Zbl 1229.28007 · doi:10.1090/S0002-9947-2011-05357-2
[3] Adamczewski, B.; Bell, J. P., A problem about Mahler functions, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17, 1301-1355 (2017) · Zbl 1432.11086
[4] Allouche, J-P; Rampersad, N.; Shallit, J., Periodicity, repetitions, and orbits of an automatic sequence, Theoret. Comput. Sci., 410, 2795-2803 (2009) · Zbl 1173.68044 · doi:10.1016/j.tcs.2009.02.006
[5] Allouche, J-P; Shallit, J., Automatic sequences (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1086.11015 · doi:10.1017/CBO9780511546563
[6] Allouche, J-P; Shallit, J., A variant of Hofstadter’s sequence and finite automata, J. Aust. Math. Soc., 93, 1-8 (2012) · Zbl 1319.11016 · doi:10.1017/S1446788713000074
[7] J. P. Bell: A generalization of Cobham’s theorem for regular sequences, Sém. Lothar. Combin.54A (2005/07), Art. B54Ap. 15. · Zbl 1194.11032
[8] Berthé, V.; Steiner, W.; Thuswaldner, J. M.; Yassawi, R., Recognizability for sequences of morphisms, Ergodic Theory and Dynamical Systems, 39, 2896-2931 (2019) · Zbl 1476.37022 · doi:10.1017/etds.2017.144
[9] Bezuglyi, S.; Kwiatkowski, J.; Medynets, K., Aperiodic substitution systems and their Bratteli diagrams, Ergodic Theory Dynam. Systems, 29, 37-72 (2009) · Zbl 1169.37004 · doi:10.1017/S0143385708000230
[10] Boigelot, B.; Brusten, J., A generalization of Cobham’s theorem to automata over real numbers, Theoret. Comput. Sci., 410, 1694-1703 (2009) · Zbl 1172.68029 · doi:10.1016/j.tcs.2008.12.051
[11] Boigelot, B.; Brusten, J.; Bruyère, V., On the sets of real numbers recognized by finite automata in multiple bases, Log. Methods Comput. Sci., 6, 1-17 (2010) · Zbl 1189.03045 · doi:10.2168/LMCS-6(1:6)2010
[12] Boigelot, B.; Brusten, J.; Leroux, J., A generalization of Semenov’s theorem to automata over real numbers, 469-484 (2009), Berlin: Springer, Berlin · Zbl 1250.03061
[13] Bruyère, V.; Hansel, G.; Michaux, C.; Villemaire, R., Logic and p-recognizable sets of integers, Bull. Belg. Math. Soc. Simon Stevin, 1, 191-238 (1994) · Zbl 0804.11024
[14] Byszewski, J.; Konieczny, J., A density version of Cobham’s theorem, Acta Arith., 192, 235-247 (2020) · Zbl 1477.11049 · doi:10.4064/aa180626-13-1
[15] Charlier, E.; Leroy, J.; Rigo, M., An analogue of Cobham’s theorem for graph directed iterated function systems, Adv. Math., 280, 86-120 (2015) · Zbl 1332.28013 · doi:10.1016/j.aim.2015.04.008
[16] Christol, G., Ensembles presque périodiques k-reconnaissables, Theoret. Comput. Sci., 9, 141-145 (1979) · Zbl 0402.68044 · doi:10.1016/0304-3975(79)90011-2
[17] Cobham, A., On the base-dependence of sets of numbers recognizable by finite automata, Math. Systems Theory, 3, 186-192 (1969) · Zbl 0179.02501 · doi:10.1007/BF01746527
[18] Cobham, A., Uniform tag sequences, Math. Systems Theory, 6, 164-192 (1972) · Zbl 0253.02029 · doi:10.1007/BF01706087
[19] Currie, J. D.; Rampersad, N.; Saari, K.; Zamboni, L. Q., Extremal words in morphic subshifts, Discrete Math., 322, 53-60 (2014) · Zbl 1296.68116 · doi:10.1016/j.disc.2014.01.002
[20] Durand, F., Cobham’s theorem for substitutions, J. Eur. Math. Soc. (JEMS), 13, 1799-1814 (2011) · Zbl 1246.11073
[21] F. Durand and M. Rigo: On Cobham’s theorem, (2011), https://hal.archives-ouvertes.fr/hal-00605375. · Zbl 07425662
[22] Einsiedler, M.; Ward, T., Ergodic theory with a view towards number theory (2011), London: Springer-Verlag London, Ltd., London · Zbl 1206.37001
[23] Elekes, M.; Keleti, T.; Máthé, A., Self-similar and self-affine sets: measure of the intersection of two copies, Ergodic Theory Dynam. Systems, 30, 399-440 (2010) · Zbl 1200.28005 · doi:10.1017/S0143385709000121
[24] Ellis, R., Distal transformation groups, Pacific J. Math., 8, 401-405 (1958) · Zbl 0092.39702 · doi:10.2140/pjm.1958.8.401
[25] Evertse, J-H; Győry, K., Unit equations in Diophantine number theory (2015), Cambridge: Cambridge University Press, Cambridge · Zbl 1339.11001 · doi:10.1017/CBO9781316160749
[26] Fagnot, I., Sur les facteurs des mots automatiques, Theoret. Comput. Sci., 172, 67-89 (1997) · Zbl 0983.68102 · doi:10.1016/S0304-3975(96)00239-3
[27] Feng, D-J; Wang, Y., On the structures of generating iterated function systems of Cantor sets, Adv. Math., 222, 1964-1981 (2009) · Zbl 1184.28013 · doi:10.1016/j.aim.2009.06.022
[28] Honkala, J., A decision method for the recognizability of sets defined by number systems, RAIRO Inform. Théor. Appl., 20, 395-403 (1986) · Zbl 0639.68074 · doi:10.1051/ita/1986200403951
[29] Kedlaya, K. S., Finite automata and algebraic extensions of function fields, J. Theor. Nombres Bordeaux, 18, 379-420 (2006) · Zbl 1161.11317 · doi:10.5802/jtnb.551
[30] Klouda, K.; Starosta, S., An algorithm for enumerating all infinite repetitions in a D0L-system, J. Discrete Algorithms, 33, 130-138 (2015) · Zbl 1328.68102 · doi:10.1016/j.jda.2015.03.006
[31] Lang, S., Integral points on curves, Publ. Math. Inst. Hautes Etudes Sci., 6, 27-43 (1960) · Zbl 0112.13402 · doi:10.1007/BF02698777
[32] Lothaire, M., Combinatorics on words (1997), Cambridge: Cambridge Mathematical Library, Cambridge University Press, Cambridge · Zbl 0874.20040 · doi:10.1017/CBO9780511566097
[33] Lothaire, M., Algebraic combinatorics on words (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1001.68093 · doi:10.1017/CBO9781107326019
[34] Mahler, K., Zur Approximation algebraischer Zahlen. I, Math. Ann., 107, 691-730 (1933) · Zbl 0006.10502 · doi:10.1007/BF01448915
[35] Maloney, G. R.; Rust, D., Beyond primitivity for one-dimensional substitution subshifts and tiling spaces, Ergodic Theory Dynam. Systems, 38, 1086-1117 (2018) · Zbl 1396.37023 · doi:10.1017/etds.2016.58
[36] Mol, L.; Rampersad, N.; Shallit, J.; Stipulanti, M., Cobham’s theorem and automaticity, Internat. J. Found. Comput. Sci., 30, 1363-1379 (2019) · Zbl 1427.11029 · doi:10.1142/S0129054119500308
[37] Queffélec, M., Substitution dynamical systems - spectral analysis (2010), Berlin: Springer-Verlag, Berlin · Zbl 1225.11001 · doi:10.1007/978-3-642-11212-6
[38] Rozenberg, G.; Salomaa, A., The mathematical theory of L systems (1980), New York-London: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0508.68031
[39] R. Schäfke and M. F. Singer: Mahler equations and rationality, (2017), Preprint. arXiv:1605.08830 [math.CA].
[40] Semenov, A. L., The Presburger nature of predicates that are regular in two number systems, Sibirsk. Mat. Ž., 18, 403-418 (1977) · Zbl 0369.02023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.