×

On word complexity and topological entropy of random substitution subshifts. (English) Zbl 07910787

Summary: We consider word complexity and topological entropy for random substitution subshifts. In contrast to previous work, we do not assume that the underlying random substitution is compatible. We show that the subshift of a primitive random substitution has zero topological entropy if and only if it can be obtained as the subshift of a deterministic substitution, answering in the affirmative an open question of Rust and Spindeler [Indag. Math. (N.S.) 29 (2018), pp. 1131-1155]. For constant length primitive random substitutions, we develop a systematic approach to calculating the topological entropy of the associated subshift. Further, we prove lower and upper bounds that hold even without primitivity. For subshifts of non-primitive random substitutions, we show that the complexity function can exhibit features not possible in the deterministic or primitive random setting, such as intermediate growth, and provide a partial classification of the permissible complexity functions for subshifts of constant length random substitutions.

MSC:

37B10 Symbolic dynamics
37B40 Topological entropy
52C23 Quasicrystals and aperiodic tilings in discrete geometry
94A17 Measures of information, entropy

References:

[1] Baake, Michael, Diffraction of compatible random substitutions in one dimension, Indag. Math. (N.S.), 1031-1071, 2018 · Zbl 1457.82054 · doi:10.1016/j.indag.2018.05.008
[2] V. Berth\'e and M. Rigo, editors, Combinatorics, Automata and Number Theory, Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2010. · Zbl 1197.68006
[3] Ferenczi, S\'{e}bastien, Complexity of sequences and dynamical systems, Discrete Math., 145-154, 1999 · Zbl 0936.37008 · doi:10.1016/S0012-365X(98)00400-2
[4] Godr\`eche, C., Quasiperiodicity and randomness in tilings of the plane, J. Statist. Phys., 1-28, 1989 · Zbl 0717.05025 · doi:10.1007/BF01042590
[5] Gohlke, Philipp, Inflation word entropy for semi-compatible random substitutions, Monatsh. Math., 93-110, 2020 · Zbl 1441.37014 · doi:10.1007/s00605-020-01380-0
[6] Gohlke, P., Measure theoretic entropy of random substitution subshifts, Ann. Henri Poincar\'{e}, 277-323, 2023 · Zbl 1512.37022 · doi:10.1007/s00023-022-01212-x
[7] Gohlke, Philipp, Shifts of finite type and random substitutions, Discrete Contin. Dyn. Syst., 5085-5103, 2019 · Zbl 1442.37025 · doi:10.3934/dcds.2019206
[8] Gohlke, Philipp, Ergodic frequency measures for random substitutions, Studia Math., 265-301, 2020 · Zbl 1461.37018 · doi:10.4064/sm181026-14-8
[9] Koslicki, David, Substitution Markov chains with applications to molecular evolution, 175 pp., 2012, ProQuest LLC, Ann Arbor, MI
[10] Lind, Douglas, An introduction to symbolic dynamics and coding, xvi+495 pp., 1995, Cambridge University Press, Cambridge · Zbl 1106.37301 · doi:10.1017/CBO9780511626302
[11] Miro, Eden Delight, Topological mixing of random substitutions, Israel J. Math., 123-153, 2023 · Zbl 1531.37040 · doi:10.1007/s11856-022-2406-3
[12] Mitchell, Andrew, Multifractal analysis of measures arising from random substitutions, Comm. Math. Phys., Paper No. 63, 44 pp., 2024 · Zbl 1541.37056 · doi:10.1007/s00220-023-04895-3
[13] Morse, Marston, Symbolic Dynamics, Amer. J. Math., 815-866, 1938 · Zbl 0019.33502 · doi:10.2307/2371264
[14] Nilsson, Johan, On the entropy of a family of random substitutions, Monatsh. Math., 563-577, 2012 · Zbl 1283.37019 · doi:10.1007/s00605-012-0401-1
[15] Pansiot, Jean-Jacques, Automata, languages and programming. Complexit\'{e} des facteurs des mots infinis engendr\'{e}s par morphismes it\'{e}r\'{e}s, Lecture Notes in Comput. Sci., 380-389, 1984, Springer, Berlin · Zbl 0554.68053 · doi:10.1007/3-540-13345-3\_34
[16] Queff\'{e}lec, Martine, Substitution dynamical systems-spectral analysis, Lecture Notes in Mathematics, xvi+351 pp., 2010, Springer-Verlag, Berlin · Zbl 1225.11001 · doi:10.1007/978-3-642-11212-6
[17] Rust, Dan, Periodic points in random substitution subshifts, Monatsh. Math., 683-704, 2020 · Zbl 1452.37058 · doi:10.1007/s00605-020-01458-9
[18] Rust, Dan, Dynamical systems arising from random substitutions, Indag. Math. (N.S.), 1131-1155, 2018 · Zbl 1409.37023 · doi:10.1016/j.indag.2018.05.013
[19] T. Spindeler, On Spectral Theory of Compatible Random Inflation Systems, Ph. D. Thesis, Bielefeld University, 2017.
[20] Wing, David Josiah, Notions of Complexity in Substitution Dynamical Systems, 109 pp., 2011, ProQuest LLC, Ann Arbor, MI
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.