×

Beyond primitivity for one-dimensional substitution subshifts and tiling spaces. (English) Zbl 1396.37023

The paper is concerned with the study of one-dimensional tiling spaces arising from non-primitive rules from the point of view of the topology, dynamics and cohomology. The study is divided into two cases: minimal and non-minimal tiling spaces.
In the minimal case (Sections \(2\) and \(3\)), the authors identify and characterize the so-called tameness property. In particular, as a corollary of this characterization, they deduce that all the aperiodic substitutions are tame. The other main result for the minimal case (Theorem 2.1) allows one to replace a non-primitive substitution with a primitive one if the substitution is minimal. More precisely, if \(\varphi\) is a minimal substitution with non-empty minimal subshift \(X_{\varphi}\), then there exist an alphabet \(\mathcal Z\) and a primitive substitution \(\theta\) on \(\mathcal Z\) such that \(X_{\theta}\) is topologically conjugate to \(X_{\varphi}\). It is worth pointing out that this result is similar to a result from F. Durand [Discrete Math. 179, 89–101 (1998; Zbl 0895.68087)].
The non-minimal case is analyzed in the rest of Sections \(4, 5\) and \(6\). The main result (Theorem 4.5) of Section \(4\) states that if \(\varphi\) is a tame recognizable substitution, then there exist a complex \(\Gamma\) and a map \(f: \Gamma\rightarrow\Gamma\) such that the corresponding tiling space \(\Omega_\varphi\) is homeomorphic to the inverse limit of \(f\). Thus the authors extend to the non-minimal setting the result obtained by J.E. Anderson and I. F. Putnam [Ergodic Theory Dyn. Syst. 18, 509–537 (1998; Zbl 1053.46520)] for primitive substitutions. The authors use the last result to explore, in terms of the cohomology, the structure of the lattice of closed invariant subspaces and quotients of a substitution tiling space. The paper finishes with several examples with the aim of illustrating carefully all the machinery developed in the paper.

MSC:

37B50 Multi-dimensional shifts of finite type, tiling dynamics (MSC2010)
37B10 Symbolic dynamics
54H20 Topological dynamics (MSC2010)
55N05 Čech types

References:

[1] J. E.Anderson and I. F.Putnam. Topological invariants for substitution tilings and their associated C^∗ -algebras. Ergod. Th. & Dynam. Sys.18(3) (1998), 509-537.10.1017/S0143385798100457 · Zbl 1053.46520
[2] M.Barge and B.Diamond. Proximality in Pisot tiling spaces. Fund. Math.194(3) (2007), 191-238.10.4064/fm194-3-1 · Zbl 1115.37010
[3] M.Barge and B.Diamond. Cohomology in one-dimensional substitution tiling spaces. Proc. Amer. Math. Soc.136(6) (2008), 2183-2191.10.1090/S0002-9939-08-09225-3 · Zbl 1139.37002
[4] M.Barge, B.Diamond and C.Holton. Asymptotic orbits of primitive substitutions. Theoret. Comput. Sci.301(1-3) (2003), 439-450.10.1016/S0304-3975(02)00889-7 · Zbl 1022.68107
[5] M.Barge, B.Diamond, J.Hunton and L.Sadun. Cohomology of substitution tiling spaces. Ergod. Th. & Dynam. Sys.30(6) (2010), 1607-1627.10.1017/S0143385709000777 · Zbl 1225.37021
[6] S.Bezuglyi, J.Kwiatkowski and K.Medynets. Aperiodic substitution systems and their Bratteli diagrams. Ergod. Th. & Dynam. Sys.29(1) (2009), 37-72.10.1017/S0143385708000230 · Zbl 1169.37004
[7] A.Clark and J.Hunton. Tiling spaces, codimension one attractors and shape. New York J. Math.18 (2012), 765-796. · Zbl 1263.37057
[8] M. I.Cortez and B.Solomyak. Invariant measures for non-primitive tiling substitutions. J. Anal. Math.115 (2011), 293-342.10.1007/s11854-011-0031-x · Zbl 1310.37008
[9] D.Damanik and D.Lenz. Substitution dynamical systems: characterization of linear repetitivity and applications. J. Math. Anal. Appl.321(2) (2006), 766-780.10.1016/j.jmaa.2005.09.004 · Zbl 1094.37007
[10] F.Durand. A characterization of substitutive sequences using return words. Discrete Math.179(1-3) (1998), 89-101.10.1016/S0012-365X(97)00029-0 · Zbl 0895.68087 · doi:10.1016/S0012-365X(97)00029-0
[11] F.Durand. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Th. & Dynam. Sys.20 (2000), 1061-1078.10.1017/S0143385700000584 · Zbl 0965.37013 · doi:10.1017/S0143385700000584
[12] F.Gähler and G. R.Maloney. Cohomology of one-dimensional mixed substitution tiling spaces. Topology Appl.160(5) (2013), 703-719.10.1016/j.topol.2013.01.019 · Zbl 1277.37020
[13] D.Lind and B.Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.10.1017/CBO9780511626302 · Zbl 1106.37301
[14] B.Mossé. Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci.99(2) (1992), 327-334.10.1016/0304-3975(92)90357-L · Zbl 0763.68049 · doi:10.1016/0304-3975(92)90357-L
[15] D.Rust. An uncountable set of tiling spaces with distinct cohomology. Topology Appl.205 (2016), 58-81.10.1016/j.topol.2016.01.020 · Zbl 1356.37023 · doi:10.1016/j.topol.2016.01.020
[16] L.Sadun. Topology of Tiling Spaces(University Lecture Series, 46). American Mathematical Society, Providence, RI, 2008.10.1090/ulect/046 · Zbl 1166.52001 · doi:10.1090/ulect/046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.